Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение метода ЭПР для исследования катализа

    Материал учебника несколько шире рамок действующей программы. В него вошли такие разделы физической химии, как основы учения о строении вещества и химической связи, теория спектральных методов исследования. Несколько более широко, чем в обычных курсах физической химии, даны такие разделы, как свойства электролитов, электрохимия, экстракция, перегонка с водяным паром, адсорбция, катализ, получение и стабилизация золей и эмульсий, мицеллообразование и солюбилизация в растворах поверхностноактивных веществ (ПАВ), применение ПАВ в фармации. Рассмотрено влияние дисперсности на свойства порошков. Принимая во внимание аналитическую направленность специальности Фармация и важное значение методов молекулярной спектроскопии для исследования и анализа лекарственных веществ, авторы уделили большое внимание изложению теории физико-химических методов анализа (рефрактометрия, поляриметрия, фотометрия, спектрофо-тометрия, кондуктометрия, потенциометрия, полярография, хроматография, электрофорез и др.). [c.3]


    Предлагаемая книга представляет собой попытку сведения воедино основных проблем, лежащих в основе практического применения гетерогенно-каталитических реакций в химической промышленности. В связи с этим материал, рассматриваемый в книге, достаточно разнообразен и охватывает как вопросы научных основ подбора и производства катализатора, так и кинетику гетерогенно-каталитических реакций, расчеты контактных аппаратов, лабораторные методы исследования катализаторов и каталитических реакций. Все эти вопросы авторы старались рассматривать с точки зрения их практического использования на разных стадиях разработки промышленных каталитических процессов. На изложение материала не могли не отразиться личный опыт и личные научные интересы авторов, вследствие чего не все материалы и теоретические положения, затрагиваемые в книге, освещены с одинаковой полнотой. Естественно, что столь обширный материал, как основы технического катализа, не мог быть изложен без заметных упущений. Поэтому авторы будут весьма благодарны всем, кто поможет их устранить. [c.4]

    В этой главе будут рассмотрены различные аспекты применения изотопов для решения ряда вопросов исследования химических и фазовых равновесий, изучения проблем химической кинетики, катализа, а также применение изотопных методов исследования в электрохимии. [c.172]

    Такого рода книги были опубликованы в начале 30-х годов нашего столетия. К, ним относятся хорошо известные многим поколениям химиков всего мира монографии Э. Ридила и X. Тэйлора Катализ в теории и практике , опубликованная в Англии в 1926 г. и в русском переводе в 1933 г., и Г. Шваба Катализ с точки зрения химической кинетики , опубликованная в Германии в 1931 г. и изданная в русском переводе в 1934 г. Эти теперь уже сильно устаревшие монографии очень удачно подводили итоги важному этапу в развитии учения о катализе на основе широкого применения в нем кинетических методов исследования в статических условиях. Однако с тех пор многое изменилось и прежде всего —методическая вооруженность исследователей катализа, открывшая совершенно новые возможности и пути. Изменилась и связь со смежными разделами науки и знания, ставшая гораздо более широкой и глубокой. Действительно, именно за 30—35 лет, о которых идет речь, создана [c.5]

    Книга представляет собой очередной том серии Катализ , хорошо известной советскому читателю. В настоящий, двенадцатый, том включено шесть обзорных статей, посвященных новым теоретическим и экспериментальным методам изучения катализа. В них рассматриваются следующие вопросы использование краев полосы поглощения К-серии рентгеновского спектра для изучения каталитически активных твердых веществ, применение нового метода дифракции электронов для изучения катализаторов, молекулярная специфичность в физической адсорбции. Весьма интересна статья, посвященная технике магнитного резонанса в каталитическом исследовании автор рассматривает отдельно ядерный магнитный резонанс и электронный парамагнитный резонанс — методы, которые позволяют получить ценные сведения о микроскопических свойствах твердых тел. [c.4]


    Для исследования катализаторов в настоящее время щи-роко применяются методы дифракции и изучения рассеяния под малыми углами рентгеновских лучей, а также флуоресцентная спектроскопия. Спектроскопический способ изучения тонкой структуры рентгеновского /С-спектра поглощения мало известен работающим в области катализа, хотя физики пользуются им уже в течение 30 лет. За этот период стали очевидны большие перспективы исследований катализа этим методом. Однако применение его задерживалось из-за экспериментальных и теоретических трудностей. [c.123]

    Большая научная и практическая важность резкого ускорения каталитических исследований и повышения их эффективности для реализации исключительных потенциальных возможностей, скрытых в катализе, требует существенного улучшения теории сложных каталитических процессов, полного учета их специфики и отказа от распространенной тенденции к переносу на сложные реакции моделей и представлений, оправдавших себя при анализе простейших процессов. Главная роль в механизме сложных каталитических превращений принадлежит различным лабильным формам, сведения о которых быстро возрастают вследствие применения в катализе новых физических методов исследования. Пока эти сведения недостаточны для полной и однозначной характеристики элементарных этапов катализа. В значительной мере благодаря применению газовой хроматографии и большому объему информации, которую она дает о процессах и катализаторах, в ряде случаев начинают приобретать достаточную определенность основные черты стадийного механизма сложных реакций. [c.3]

    Создание научной теории предвидения каталитического действия веществ, позволяющей рациональным путем подбирать катализаторы для различных реакций, является основной проблемой катализа. Над ее рещением работает огромная армия исследователей, ей посвящены тысячи работ, однако и сегодня мы находимся от ее решения не намного ближе, чем несколько десятков лет назад. За последние годы достигнуты большие успехи в раскрытии механизма отдельных сторон каталитических реакций (главным образом в результате применения новейших методов исследования). Установлены многочисленные корреляции между физикохимическими свойствами веществ н их каталитическим действием, сделаны частные обобщения для отдельных групп родственных реакций. Но, несмотря на эти успехи каталитической науки, поиск новых катализаторов продолжает осуществляться, как и прежде, эмпирическим путем, исходя из общих представлений, аналогий, частных закономерностей и т. п. [c.5]

    Наконец, весьма эффективным оказывается статистический подход к анализу такого сложного явления, как гетерогенный катализ. Возможности для реализации такого подхода появились, с одной стороны, благодаря созданию быстродействующих и мощных электронно-вычислительных машин, а с другой, благодаря накоплению огромного, хотя и не всегда строго количественного экспериментального материала в области практического катализа. Методической основой для статистического обоснования прогнозов активности гетерогенных катализаторов является математическая теория распознавания, усиленно разрабатываемая в последнее время в связи с потребностями медицины, геологии и ряда других важных областей. При отсутствии уже готового экспериментального материала для интересующей исследователя реакции метод распознавания позволяет существенно сократить время на изыскания катализаторов путем проведения поисковых экспериментов по специальному плану и на основе анализа этих результатов также методом распознавания. Существенно, что при применении методов распознавания в качестве исходной информации могут быть использованы параметры, уже апробированные при исследовании частных взаимосвязей, такие, как значения электронных плотностей молекул реагентов, потенциалы ионизации катализаторов, теплоты связей в катализаторе и молекулах реагентов, и многие другие. Аналитическая мощность методов распознавания необычайно высока и позволяет выявлять зависимость качества исследуемого объекта от нескольких десятков свойств его самого и воздействующих на него субстратов. [c.6]

    При изучении механизмов реакций в химии широко применяется кинетический метод. Попытки использования этого метода для исследования процессов, катализируемых ферментами, предпринимались еще в начале нашего века. Однако лишь в последние десятилетия кинетика ферментативного катализа развилась в самостоятельное научное направление со своими задачами и методами. Разумеется, здесь пока еще больше нерешенных проблем, чем законченных теорий. Однако уже теперь вырисовываются интересные перспективы применения методов ферментативной кинетики как в области теории механизма действия ферментов, так и при изучении взаимодействия с ферментами биологически активных веществ,-имеющих практическое значение (лекарственные препараты, гербициды, инсектициды и т. п.). В соответствии с этим настоящая книга имеет две задачи — осветить в сравнительно сжатой форме теоретические основы кинетики ферментативного катализа и проанализировать возможности и пути практического использования кинетического метода в изучении механизма действия ферментов. [c.3]


    Новый этап в развитии физической химии, охватывающий четыре последних десятилетия, характеризуется установлением связи между макроскопическими характеристиками процесса и их микроскопической основой. Конкретным результатом этой связи является создание более совершенных методов исследования — статистических и квантово-механических. Применение этих методов привело не только к дальнейшему расширению и углублению основных положений физической химии, но и к созданию ряда новых ее разделов, важнейшими из которых являются статистическая термодинамика, теория атомной и молекулярной спектроскопии, теория химической связи, теория цепных реакций, теория гетерогенного катализа и др. На основе законов современной физической химии можно предвидеть не только конечный результат физико-химического процесса, но и скорость, с которой может быть достигнут этот результат. В этом состоит огромное практическое значение физической химии. [c.7]

    В докладе Л. Я. Марголис и С. 3. Рогинского приведены весьма интересные результаты исследования механизма реакций каталитического окисления посредством введения в реакционную смесь предполагаемых промежуточных продуктов, меченных радиоактивным изотопом. В связи с этим я хочу заметить, что для реакций гетерогенного катализа применение метода меченых атомов осложняется тем, что промежуточные соединения могут испытывать ряд последовательных превращений, оставаясь на поверхности катализатора. Поэтому, с точки зрения скорости последующих превращений, меченые соединения, вводимые в газовую фазу, неравноценны соединениям, образующимся в процессе реакции на поверхности катализатора. Дополнительным условием получения правильного вывода о промежуточных стадиях каталитической реакции является достаточная быстрота обмена данным соединением между газовой фазой и поверхностью катализатора, что, по-видимому, не всегда соблюдается. [c.135]

    Второе существенное обстоятельство — это условность деления катализа на гомогенный и гетерогенный. Давно известно, что многие гомогенные реакции включают, кроме явных гомогенных, скрытые гетерогенные стадии. Обратное положение в типичном гетерогенном, газовом катализе. В зернистой и пористой каталитической шихте часто некоторые этапы или определенные побочные процессы протекают в газовом пространстве между зернами и в порах. Но эти гомогенные этапы делаются явными только в особо благоприятных условиях или при применении специальных методов исследования. Сочетание гомогенных стадий с гетерогенными давно известно для газовых реакций [71]. В последнее время появились серьезные работы, показывающие распространение гетерогенно-гомогенных процессов и в жидкой фаге. При изучении этого вопроса, как и при исследовании сходства и различия механизма типичного гомогенного и типичного гетерогенного катализа, следует учитывать наличие в сложном катализе механизмов и закономерностей, связанных с резко выраженными внутренними кибернетическими функциями. Заметим также, что гомогенное продолжение гетерогенных процессов перестает играть роль при переходе к достаточно низким давлениям газа и к низким температурам. [c.50]

    Мы обсудили выше в общих чертах основные принципы метода межфазного катализа и надежды, связанные с его применением. Фактически эти принципы хорошо согласуются с данными, известными в настоящее время о механизме многих меж-фазных процессов. Детальные исследования были проведены в этом направлении несколькими группами исследователей, их выводы хорошо согласуются между собой. [c.18]

    Метод кинетики внес существенный вклад в создание теории каталитического действия холинэстераз. Можно надеяться, что развитие ферментативной кинетики и ее применение в исследованиях холинэстераз и других ферментов приведут к новым успехам в решении проблем ферментативного катализа. [c.242]

    Н. Д. Зелинский [17], развивая работы по дегидрогенизации циклогексана в бензол в присутствии тонкораздробленного никеля [122], обнаружил, что металлы платиновой группы катализируют эту реакцию при значительно более низких температурах . Оказалось, что в этих более мягких условиях некоторые другие углеводороды, например циклопентан и его гомологи, не дегидрируются. Различное отношение циклопентановых и цикло-гексановых углеводородов к дегидрогенизационному катализу дало возможность разделять их смеси с помощью метода селективной дегидрогенизации [123]. Этот метод был применен к исследованию нафтенов нефти [124, 125] и определению циклопен-танов в парафиновых углеводородах [126]. [c.171]

    Первая в мировой литературе монография, посвященная применению метода инфракрасной спектроскопии в адсорбции, хемосорбции и катализе. По просьбе автора — английского ученого Л. Литтла — три главы книги написаны советскими учеными—проф. А. В. Киселевым и доктором хим. наук В. И. Лыгиным. В книге обобщен весь имеющийся до 1966 г. материал по методике и результатам исследования этим методом адсорбции и хемосорбции молекул металлами, окислами, цеолитами и глинами. Значительное внимание в ней уделено работам советских ученых. [c.4]

    Бензинизация нефти и масел явились, по-видимому, первым успешным применением методов органического катализа в СССР. В 1918 г. страна была отрезана от Кавказа, и возникла задача переработать сохранившиеся запасы солярового масла в бензин, в котором ощущался острый недостаток. Эта задача была разрешена исследованием Зелинского по катализу хлористым алюминием, дробящим (крекируют,им) крупные молекулы, содержащиеся в нефти, в более мелкие и гидрогенизирующим их с образованиехМ бензина. На таком бензине летали советские самолеты в гражданскую войну. Крекинг хлористым алюминием получил затем одно время значительное промышленное развитие в США. [c.181]

    Этим норийекая нефть отличается от других нефтей нашей страны, исследованных с применением метода дегидроге-низационного катализа. Аналогичный случай, т. е. преобладание прочих цикланов над п1дроароматическими углеводородами, находим в работе Ю. К. Юрьева [14], но для фракции 122—150° чангырташской нефти. [c.134]

    Большое значение для понимания механизмов катализа, эффектов промотирования и отравления катализаторов имеет сопоставлв ние поверхностного состава до и после каталитической реакции. В последнее время исследования модельных и реальных катализаторов показали особенно высокую эффективность комплексного применения методов РЭС и ОЭС. Хотя в ОЭС при двукратной (и более) ионизации возрастает роль трудно учитываемых многоэлектронных процессов, этот метод даже при простых подходах к интерпретации результатов позволяет получить очень важные и обширные данные при выяснении причин промотирования и отравления катализаторов. [c.163]

    Лефтин и Хобсон не стремились в своей оригинальной статье к исчерпывающему охвату материала по применению спектрометрии для изучения каталитических систем. Поскольку по ИК-спек-троскопии адсорбированных молекул уже был опубликован ряд хороших обзоров, ей уделено относительно небольшое место. В настоящее время это представляется тем более оправданным, что в 1966 г. появилась фундаментальная монография Литтла ИК-спектры адсорбированных молекул ). Авторы, уделив основное внимание спектроскопии адсорбированных молекул в ультрафиолетовой и видимой областях, по существу дали первый систематический обзор данных, полученных в этих двух областях, подводящий итоги значительного этапа в изучении элементарных актов адсорбции и катализа. После кратких введения и описания общей методики и аппаратуры в статье рассмотрено применение метода для характеристики поверхностных групп и их взаимного расположения в процессах гидмтйции -г- дегидратации на различных катализаторах и адсорбеитахУ, а Также эффекты адсорбции. Авторы приводят результаты "исследования влияния физической адсорбции на спектры различных адсОрбатов на окислах, ионных солях, катализаторах крекинга. Несоменно, наиболее интересен раздел обзора, посвященный хемосорбции. Он охватывает адсорбенты различной природы — металлы на носителях, окислы, соли и кислотные катализаторы. Большая часть материала этого раздела относится к электронным спектрам углеводородов однако в нем представлены и данные, касающиеся адсорбции Нг, СО, НСООН и ряда других полярных молекул. На основе приведенных данных авторы обсуждают некоторые стороны механизма адсорбции углеводородов. [c.5]

    Применение метода ТПД аммиака позволило усгановить корреляцию между активностью и общей кислотностью исследованных в катализе образ1юв катализаторов, а также величиной удельной поверхности. [c.118]

    Применение. Методом ЭПР можно определять концентрацию и идентифицировать парамагн. частицы в любом агрегатном состоянии, что незаменимо для исследования кинетики и механизма процессов, происходящих с их участием. Спектроскопия ЭПР применяется в радиационной химии, фотохимии, катализе, в изучении процессов окисления и горения, строения и реакционной способности орг. своб. радикалов и ион-радикалов, полимерных систем с сопряженными связями. Методом ЭПР решается широкий круг струк-турно-динамич. задач. Детальное исследование спектров ЭПР парамагн. ионов d- и /-элементов позволяет определить валентное состояние иона, найти симметрию кристаллич. Поля, количественно изучать кинетику и термодинамику многоступенчатых процессов комплексообразования ионов. Динамич. эффекты в спектрах ЭПР, проявляющиеся в специфич. уши-рении отдельных компонент СТС, обусловленном модуляцией величины констант СТВ за счет внутри- и межмол. хим. р-ций, позволяют количественно исследовать эти р-ции, напр, электронный обмен между ион-р калами и исходными молекулами типа + А. < А + Д , лигандный обмен типа LK + L + L, внутримол. процессы вращения отдельных фрагментов в радикалах, конформац. вырожденные переходы, внутримол. процессы перемещения атомов или Фупп атомов в радикалах и т. д. [c.450]

    Применение метода дифференциальной термопары, разработанного В. В. Патрикеевым и автором [319, 320] при исследовании катализа спиртов окислами титана, иттрия и др. в работах А. А. Толстопятовой, автора и И. Р. Коненко [321—326], показало, что эти окислы, сначала оказывающие дегидрирующее действие, вскоре покрываются углистыми отложениями и проявляют дегидратирующее действие. Окись хрома и окись цинка не показывают такого эффекта. Последний необходимо учитывать при катализе окислами. Автор, О. К. Богданова и А. П. Щеглова [107] нашли, что хромовый катализатор дегидрогенизации бутилена долго не снижает своей активности, несмотря на образование угля. Поскольку на окислах образуются не дендриты, а смолистые пленки, то отсюда был сделан вывод, что молекулы продуктов разложения мигрируют по поверхности, освобождая активные центры и накапливаясь на неактивных участках. [c.80]

    Изотопные методы исследования оказывают весьма существ венную помощь при рещении некоторых теоретических проблем катализа исследование механизма каталитических реакций, изучение природы активной поверхности катализаторов и влияния микродобавок на каталитическую активность, выяснение характера участия катализатора в процессе катализа и т. д. [314—326]. Однако до последнего времени применение метода радиоактивных индикаторов в этой, области не получило должного развития. По< этому ниже будут рассмотрены лищь некоторые примеры исполь зования радиоактивных изотопов для рещения вопросов, связанных с проблемами катализа. [c.171]

    Из табл. 1 13ИДП0, что эта статья не выходит за пределы прямых применений изотопов в катализе, почти не затрагивая ни их применений к явлениям и проблемам, близким к катализу и суацествепным для его понимания, ни вспомогательных изотопных методов исследования и контроля. Не был рассмотрен и катализ в химии изотопов. [c.27]

    Из прямых применений в катализе опущены почти не развитые, по перспективные воздействия излучений радиоизотопов па катализаторы и каталитические процессы. Табл. 1 показывает, что пока катализ значительно больше получает от химии изотопов, чем дает последней. Проведенные до сих пор работы, основапные на использовании изотопных методов в катализе, представляют в основном широкую и бессистемную разведку. Результаты этой разведки пе оставляют сомнения в большой эффективности и перспективности направления, по число разъясненных до конца частных и общих вопросов невелико. Нередко изотопные исследования выдвигают больше новых проблем, чем решают старых. Это обусловлено следующим  [c.27]

    Основное направление применения метода ШР в катализе состоит в изучении парамагнитных свойств катализаторов и в поисках корреляции мевду этими вoй J вa AИ и каталитической активностью. Кроме того, имеется достаточное количество работ, посвященных исследованию элементарных актов адсорбции, а также реакций адсорбированных радикалов на твердых поверхностях. Последняя группа работ имеет определенное отношение к катализу - в той мере, [c.318]

    Реакции первого типа носят радикальный характер,и здесь наличие парамагнитных центров на поверхности катализатора во время катализа представляется необходимы ) условием проявления каталитической активности.Взаимодействие между поверхностными "свободными валентностями представляется в данном случае неаущеотвенным. Йз числа исследованны с с применением метода ЭЗР каталитических процессов такого рода наиболее детально изучена реакция полимеризации этилена на нанесенных хромовых контактах. [c.318]

    Неаналитическая газовая хроматография включает методы изучения термодинамики абсорбции и адсорбции, определения диффузионных характеристик газов и жидкостей, а также методы изучения процессов хемосорбции и катализа и ряд других применений. В настоящее время упомянутые направления бурно развиваются главным образом благодаря работам Е. Глюкауфа, А. А. Жуховицкого, А. В. Киселева, С. 3. Рогинского,Т. Шая, Э. Кремер, Дж. Гиддинг-са, Р. Кобаяши, Д. Эверетта, П. Эберли и их сотрудников. Эти материалы содержатся в большом числе оригинальных публикаций. Глубокому обобщению были подвергнуты лишь данные по хроматографическому изучению термодинамики адсорбции (А. В. Киселев, Я. И. Яшин. Газо-адсорбционная хроматография ) и исследованию кинетики каталитических реакций (обзоры М. И. Яновского и Д. А. Вяхирева с сотр.). В связи с этим в настоящей книге основное внимание уделено хроматографическим методам исследования термодинамики растворов и изучения структуры и свойств катализаторов, а также освещены вопросы хроматографического определения коэффициентов диффузии, молекулярных масс и т. д. [c.3]

    Изучение природы активных центров, а также строения и свойств поверхностных соединений, образующихся при взаимодействии молекул с поверхностью катализатора, позволяет глубже проникнуть в механизм гетерогенного катализа и ближе подойти к решению задачи научного подбора катализаторов. Широко используемые в настоящее время кинетические методы исследования каталитических реакций не могут дать прямую информацию о промежуточных стадиях каталитического процесса. Многие детали каталитических реакций не удается выяснить также при помощи других физико-химических методов исследования, например применением изотопов. В ряде случаев эта задача может быть успешно решена применением инфракрасной спектроскопии, которая позволяет следить за превращением молекул непосредственно на поверхностж катализатора, что открывает большие возможности для изучения промежуточных стадий каталитических реакций [1, 2]. [c.253]

    Число известных в настоящее время структур и химических форм, образующихся при хемосорбции на поверхности твердых тел, довольно значительно. Этому мы обязаны в основном применению к изучению двумерных поверхностныхсоединенийдифракции медленных электронов, спектроскопии в видимой и инфракрасной части спектра, электронного парамагнитного резонанса и других современных методов исследования. Часть одних обнаруженных форм имеет близкие аналоги среди неорганических и органических молекул и кристаллов, часть — таких аналогов не имеет. В табл. 1.4 приведены некоторые из этих форм, представляющие интерес для катализа. [c.53]

    Газохроматографические методы исследования поверхности катализаторов осуществляют в простой аппаратуре, не требующей применения вакуума. Характерной особенностью хроматографических методов являются высокая чувствительность, экспрессность — обычно для исследования требуются весьма небольшие количества адсорбента и адсорбата. Вследствие динамического характера различных газохроматографических вариантов измерения адсорбции время контакта адсорбата с адсорбентом может быть очень мало, благодаря чему удается изучать адсорбционные процессы реакционноспособных веществ на активных катализаторах в области повышенных температур, представляющей особый интерес для катализа. Таким методом были измерены, например, изотермы адсорбции агрессивных газов и паров. Можно отметить,что аналогичные опыты в обычной статической аппаратуре проводить затруднительно. Другой особенностью, выгодно отличающей газохроматографическую методику от обычной, является возможность проведения опыта без извлечения оттренированного или стабилизированного в ходе химического процесса катализатора из реактора. Таким путем удается детально проследить за начальными этапами разработки катализатора или за блокировкой активной поверхности и выявить устойчивость катализатора к различным компонентам реакционной смеси в ходе длительных испытаний. [c.108]

    Несмотря на прогрессивную роль оптического метода исследования углеводородного состава бензипов (как известно, детальное изучение иятичленных нафтеновых и, в особенности, парафиновых углеводородов бензина почти невозможно без применения оптического метода исследования), нам кажется, что при изучении ароматических углеводородов, а также превращеипых при помощи дегидрогенизационного катализа в ароматические углеводороды шестичленных нафтенов, мы не должны забывать химические методы исследования, тем более, что оптический метод требует сложного оборудования и доступен не всем лабораториям. Б связи с этим, в нашей лаборатории в течение ряда лот ведется методическая работа по изучению смеси ароматических углеводородов химическим путем. [c.316]

    Ранее переход к aTHHHJunibiM производным от хлорсодержащих продуктов путем отщепления х юрида водорода осуществлялся либо действием амида натрия в жидком аммиаке, либо действием твердого едкого калия в среде различных растворителей. В настоящем исследовании для целей отщепления хлорида водорода с получением ацетпле-новой связи был использован метод межфазного катализа солями четвертичных аммониевых оснований. Синтезы проводились с применением тетрабутиламмоиийбисульфата в качестве катализатора межфазного переноса, бензола — в качестве растворн ] еля п 50%-ного водного раствора едкого кали — в качестве щелочного агента. [c.52]

    Как уже отмечалось нами во Введении, во всех разделах этой книги (включая и настоящую главу) рассмотрению подлежат исследования, в которых наиболее отчетливо (без трудноучитываемых влияний) проявляется зависимость между строением и реакционной способностью органических соединений. Поэтому некоторые направления исследований развития кинетики органических реакций (радиационная кинетика, гетерогенный катализ, применение изотопно-кинетических методов исследования, электродные процессы) в середине 50—60-х годах нами не анализировались. Необходимость исключения этих направлений можно продемонстрировать на отдельных примерах. [c.113]

    В предыдущих главах уже было показано, что точная современная научная аппаратура обязательно нужна для контроля за окружающей средой и для применения химии в экономике. Методы исследования поверхности имеют рещаю-щее значение для достижения новых успехов в катализе, на котором основано столько химических производств. Хроматография вместе с масс-спектрометрией и лазерной спектроскопией превратилась в повседневное средство аналитического контроля. Инфракрасная спектроскопия — это типичный спектральный метод, нашедщий эффективное применение в контроле за окружающей средой, а также в научных исследованиях. [c.236]

    Настоящая монография представляет собой практически полное обобщение имеющейся литературы по МФК, материал в ней хорошо систематизирован, она содержит большое число табличных данных, позволяющих ознакомиться с уже провет денными исследованиями в концентрированном виде. Несомненно, что метод межфазного катализа благодаря своей простоте и экономичности найдет широкое применение не только в лабораторной практике, но и в промышленности. [c.7]

    В последние двадцать лет интенсивно изучалось взаимодействие газообразных молекул с атомами на поверхности катализатора и строение самой поверхности катализаторов. Для этих целей были применены чрезвычайно мощные методы исследования, и хотя при их применении оказалось, что боль-О шинство простых корреляций, полученных в прошлом, были либо педоста-( гочными, либо ошибочными, теперь появилась многообещающая возмож-О ость сблизить представления гетерогенного катализа с представлениями Гомогенного катализа, который еще в прошлом в гораздо большей степени поддавался объяснению. Стало очевидным, что, вместо того чтобы нрида- вать слишком большое значение таким понятиям, как суммарная или общая концентрация электронов в твердом теле, следует разумно применять некоторые более важные представления зонной теории, теории поля лигандов и общие принципы органической и неорганической химии для оценки свойств переходных комплексов, образующихся на поверхности. [c.17]

    Другой возможный путь реакции [411, 412] заключается в том, что окись углерода и водород вначале образуют углеродно-водородно-кислородный комплекс на новерхности катализатора. Эти комплексы могли бы затем служить ядрами для образования высших углеводородов по реакции, напоминающей цепной процесс, нри последующем присоединении к первоначальным комплексам молекул окиси углерода. Используя радиоактивную, меченную С окись углерода, Эммет [412—418] пришел к выводу, что первый механизм не выполняется. Для доказательства этого он использовал следующий метод. Образец железного катализатора частично превращали, подвергая его действию радиоактивной окиси углерода, в РеаС и определяли долю поверхности катализатора, содержащую радиоактивный углерод. После этого железный катализатор, содержащий радиоактивный карбид железа, приводили в соприкосновение с нерадиоактивными окисью углерода и водородом и заставляли эту газовую смесь циркулировать над поверхностью катализатора. Определяя количество радиоактивных углеводородов среди продуктов реакции, Эммет нашел, что только около 10% радиоактивности оказывалось перенесенной с поверхности катализатора в газовую фазу. Следовательно, образование карбида не может быть главным путем, по которому происходит синтез углеродов (см. гл. 8). Более поздние исследования с 1 С [412, 419, 420], в которых использовался такой же подход, привели к выводу, что главными промежуточными продуктами нри образовании высших углеводородов из смесей водорода и окиси углерода, проходящих над катализаторами Фишера — Тропша, являются смеси первичных и вторичных спиртов, образующихся с равной вероятностью. В настоящее время применение С в исследованиях катализа продолжает расширяться [421]. [c.135]


Библиография для Применение метода ЭПР для исследования катализа: [c.13]   
Смотреть страницы где упоминается термин Применение метода ЭПР для исследования катализа: [c.132]    [c.20]    [c.131]    [c.246]    [c.314]    [c.319]    [c.60]    [c.84]   
Смотреть главы в:

Экспериментальные методы исследования катализа -> Применение метода ЭПР для исследования катализа




ПОИСК





Смотрите так же термины и статьи:

Новые методы исследования катализа и катализаторов Применение электрохимических методов к исследованию каталитических активных поверхностей.— А. Н. Фрумкин

Применение в катализе

Применение для исследования катализа



© 2025 chem21.info Реклама на сайте