Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектроскопия дальняя

    Применение КР-спектроскопии для изучения взаимодействия кислорода цеолитных каркасов с катионами и локализации последних было рассмотрено выше КР-спектроскопия более чувствительна к этим структурным свойствам цеолитов, чем к топологии каркасов. Подобную информацию о положениях катионов и их взаимодействии с каркасами позволяет также получать спектроскопия дальней ИК-области. [c.144]


    Для знакомства с библиографией по спектроскопии дальней ИК-области см. работу [49]. [c.63]

    Осн. научные работы — в области хим. кинетики и катализа. Обнаружил новый тип хим, превращений в ТВ. телах — туннельные реакции переноса электрона на большие расстояния. Изучал спиновый обмен -- физ. процесс, моделирующий хим. Р-1ЩИ. Развил ряд сопрем, физ, методов исследования катализа (ЭПР, ЯМР, спектроскопия дальней тонкой структуры рентгеновских спектров поглощения), Обнаружил и исследовал активные промежуточные комплексы для ряда гомогенных каталитических р-ций. Выяснил особенности строения хим. центров на поверхности ряда важных гетерогенных катализаторов. Внес существенный вклад в разработку каталитических методов преобразования солнечной энергии. [c.171]

    Спектры электромагнитного излучения, испускаемого, поглощаемого и рассеиваемого веществом, изучает раздел физики — спектроскопия. Квант поглощаемой или испускаемой веществом энергии соответствует изменению энергии при каком-либо единичном акте атомного или молекулярного процесса (табл. 11). Наиболее коротковолновое излучение (у-излучение) соответствует ядерным процессам. Квантовые переходы внутренних электронов атомов и молекул сопровождаются рентгеновским излучением. Электромагнитное излучение ультрафиолетовой и видимой области спектра отвечает квантовым переходам внешних (валентных) электронов. Колебанию атомов в молекулах отвечает инфракрасное излучение, вращению молекул — дальнее инфракрасное излучение, спиновому переходу элект-1)онов и ядер — радиоизлучение. [c.140]

    Дальнейшее исследование состава высококипящих нефтяных фракции в дополнение к обычно применяемым аналитическим методам включают новейшие методы анализа, такие, как хроматографию, спектроскопию в ультрафиолетовой и инфракрасной областях и в самое последнее время — масс-спектроскопию. [c.31]

    Необходимо отметить, что при интерпретации диэлектрических данных и проведении различных расчетов нужна дополнительная информация о системе сорбент — сорбированная вода, получаемая с помощью других физико-химических методов (ЯМР, ИК-спектроскопия и т. д.). Это может существенно повысить эффективность исследования диэлектрических свойств увлажненных материалов. В то же время высокая чувствительность диэлектрического метода дает возможность более детально исследовать сорбцию воды на различных материалах. Дальнейшее развитие диэлектрического метода зависит от установления более тесной и определенной его связи с другими физико-химическими методами, а также решения таких актуальных вопросов теории диэлектриков, как расшифровка диэлектрических спектров, расчет различных видов поляризации и диэлектрических характеристик системы сорбент — сорбированная вода. [c.254]


    В табл. 13-4 указаны диапазоны электромагнитного излучения, энергия которого выражена в различных единицах, а также названы источники излучения и приемные устройства, применяемые в каждом диапазоне. Квантованный характер молекулярных энергетических уровней используется в современных спектроскопических исследованиях для идентификации молекул и выяснения их молекулярного строения. Например, изучение вращательных переходов методами спектроскопии в дальней ИК-области и микроволновой спектроскопии дает исключительно точные сведения [c.587]

    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]

    Для моделирования свойств смол и асфальтенов использовался полиэтилен низкой кристалличности (от 5 до 10%), определенной с помощью ИК-спектроскопии. Рентгенограмма также показала наличие слабых рефлексов, полоса — (200) при 3,7 А. Полиэтилен служил для имитации алифатической части молекул асфальтенов, а в качестве ароматической части таковых бралась сажа. Конечно, оба компонента в этой искусственной смеси (полиэтилен и сажа) не воспроизводили тип углеродного скелета алифатической и ароматической частей молекул асфальтенов. Это была искусственная модель (заменитель), в какой-то мере чисто формально позволившая выявить характер влияния двух образцов углеродистого вещества с разным типом С—С-связей алифатической (полиэтилен) и графитоподобной — ароматической (сажа), на физическую упаковку (структуру) этой бинарной смеси — заменителя асфальтенов. Смесь сажа—полиэтилен составлялась постепенным добавлением сажи к полиэтилену под гидравлическим резиновым прессом. Образец этой смеси проводился 15 раз через пресс. Рентгеновские измерения производились при интенсивности в интервале 20=8н-100°. Были получены записи рентгеновской дифракции для различных асфальтенов и нефтяных смол (рис. 46). Путем нормализации этих кривых и сравнения их с независимой кривой распределения углерода в интервале (sin 0)Д=0,08-н0,5 были получены кривые рентгеновской дифракции (рис. 47) для исследованных природных образцов, которые сопоставлялись с кривыми для образцов кристаллического полиэтилена, сажи и их смесей (рис. 48). Такой прием нормализации был применен с целью разрешения 7- и (002)-полос, которые в дальнейшем служили для количест- [c.232]

    Дальнейшее развитие и усовершенствование метода инфракрасной спектроскопии применительно к исследованию высокомолекулярных соединений нефти позволит [c.245]

    Применение Н ЯМР-спектроскопии к анализу нефтяных фракций не получило столь широкого развития, как газо-жидкостной хроматографии или масс-сПектрометрии, что связано со спецификой метода. Так, в сложных смесях,— учитывая и без того небольшой интервал значений характеристических величин, в данном случае химических сдвигов (всего 20 м. д. для протонов из всех возможных классов органических соединений) — близкие по структуре соединения дают лишь уширение сигналов. Дальнейшее усложнение спектров происходит за счет спин-спинового взаимодействия Н-атомов. Применение ПМР-спектров для количественной оценки тех или иных групп обычно затруднено. Так, определить интенсивности сигналов протонов различных алифатических групп трудно в виду их перекрывания. Определение интегральных интен- [c.140]

    Дальнейшее развитие приложения спектроскопии и других упомянутых выше методов к изучению состава масляных фракций нефтей позволит шире осветить строение сернистых соединений, весьма важное как для понимания производства масел, так и особенно для освещения вопросов, связанных с использованием масел. [c.55]

    Масс-спектроскопия. Масс-спектральный метод анализа основан на ионизации потоком электронов в паровой фазе под глубоким вакуумом исследуемой углеводородной смеси. Образующийся при этом поток ионов в магнитном поле делится на группы в зависимости от их масс. Ионизацию ведут таким путем, что происходит не только ионизация, но и распад молекул углеводородов с образованием осколочных ионов. Между структурой соединения и его масс-спектром существуют определенные зависимости, которые и положены в основу количественного анализа этим физическим методом. Для каждого класса углеводородов характерно образование определенного ряда осколочных ионов. В магнитном поле, в зависимости от массы и заряда, полученные ионы движутся по различным траекториям. В конечном итоге ионы направляются на фотопластинку, и на ней получается масс-опектр. Каждый углеводород дает на масс-спектрограмме свои характерные полосы, по которым ведется в дальнейшем расшифровка спектрограмм. [c.62]


    Имеется очень мало сообщений относительно ЭПР-исследо-ваний разрыва цепей в процессе образования шейки и вытяжки [21, 169, 174—179]. Эти сообщения будут рассмотрены в дальнейшем и дополнены результатами наблюдений другими методами ИК-спектроскопией концевых цепных групп [178] и определением распределений молекулярной массы [179]. [c.306]

    Использование ИК и ЯМР С спектроскопии позволило определить следующее соотношение изомеров ЦГТ в продуктах алкилирования толуола циклогексанолом (мае доля, %) орто- 37. 39, мета- 8. 10, пера- 56.. 57. Примерно такой же изомерный состав был получен в дальнейшем при анализе продуктов дегидрирования Ц1Т [c.130]

    По данным ИК-спектроскопии, в начальной станции процесса вследствие дегидрирования образуются двойные углерод-углеродные связи (пик 1630 см ). Подъему кривой напряжений соответствует циклизация нитрильных групп, в том числе межмолекулярных, и образование сшивок между молекулярными пенями за счет возникновения азометиновых мостиков. С увеличением начального напряжения или температуры стабилизации предельное напряжение (<Тоо) в течение времени стабилизации снижается. 8-образный вид кривых (рис. 9-41) свидетельствует об автоускорении описанных реакций. Предполагается, что продуктом, который инициирует этот процесс, является /3-кетонитрил.Он образуется при окислении ПАН. При дальнейшем [c.582]

    Вещество на выходе непосредственно из хроматографической колонки или из детектора выделяют из потока газа-носителя при помощи систем специальных ловушек, а затем используют обычный метод подготовки проб для ИК-спектроскопии. Вещество, попадающее в ловушку, либо вымораживается и затем подвергается обычной подготовке, либо улавливается таким образом, чтобы затем его можно было бы без дальнейших приготовлений подвергать спект--ральному анализу. [c.121]

    Данная книга является продолжением учебника Физические методы исследования в химии. Структурные методы и оптическая спектроскопия (М., Высшая школа, 1987, в дальнейшем для краткости мы будем ссылаться на часть I), где были рассмотрены многие общие вопросы, в частности, касающиеся прямых и обратных задач, временной шкалы (характеристического времени). [c.3]

    Тотальный двойной резонанс, или метод спиновой развязки, требует дальнейшего повышения мощности второго поля. ГТри можно добиться полного коллапса расщеплений, связанных с облучаемым ядром. Этот метод находит широкое применение. В спектроскопии ПМР он используется для упрощения спектров и доказательства спиновой связи групп. В спектроскопии ЯМР С обычно бывает необходимая полная развязка от всех протонов ( С— Н ). [c.52]

    Постоянное совершенствование и появление принципиально новой техники эксперимента, автоматизация и сочетание с ЭВМ открывают все новые возможности и перспективы применения методов. В качестве примеров достижений бурно развивающегося приборостроения в рассматриваемой области можно указать на современные импульсные фурье-спектрометры, появление техники двухмерной спектроскопии ЯМР и уже упоминавшегося множественного резонанса. Повышение чувствительности, спектрального, временного и пространственного разрешения, которое дает эта новая техника, приводит к дальнейшему расширению получаемой информации и поднятию ее на другой, более высокий уровень. Понятно поэтому, что интерес к развитию теории методов спектроскопии ЯМР и ЭПР и практическому их применению не только не ослабевает, но продолжает неуклонно расти. [c.85]

    К большому сожалению, следует указать на то, что некоторые методы практически не используются в нашей стране из-за отсутствия соответствующей аппаратуры, что существенно снижает уровень исследований. Это касается частично новинок спектроскопии ЯМР, а также фотоэлектронной спектроскопии, колебательного кругового дихроизма, магнитного кругового дихроизма. Можно надеяться на то, что дальнейшее развитие научного приборостроения ликвидирует этот пробел. [c.264]

    Переходам между колебательными состояниями соответствует средняя инфракрасная область, характеризуемая частотами 10 — I0 Гц и длинами волн соответственно 3000 — 30 ООО нм. Колебательная спектроскопия также очень широко используется в химии и будет рассмотрена в дальнейшем более подробно. [c.170]

    Излагаемый в дальнейшем материал относится к резонансной спектроскопии ядер Н. Для всех других магнитно-активных ядер имеют силу соответственно измененные соотношения. [c.253]

    ЯМР-спектроскопия — особо тонкий и изящный метод исследования. В процессе измерения исследуемые пробы практически не изменяются. Так, при работе со спектрометром на частоте 60 МГц энергия возбуждения составляет только 0,006 кал/моль (протонный резонанс). Поэтому спектроскопия ПМР эффективна для исследований динамических равновесий, партнеры которых невозможно разделить (поворотные изомеры, таутомерные равновесия и др.). Исследуя зависимость ЯМР-спектров таких систем от температуры, можно определить также их термодинамические характеристики. Соответствующие примеры и дальнейшие возможности применения метода рассмотрены в специальной. питературе. [c.264]

    В последние годы стремительно растет число публикаций, посвященных основам и возможностям применения ЯМР-спектроскопии. Поэтому целесообразно указать ряд литературных источников, которые облегчат дальнейшую работу ь этой области 193—100, 109, ПО]. [c.264]

    И все же действительно тройные связи, как правило, более подвержены нуклеофильным и менее — электрофильным атакам, чем двойные связи, несмотря на более высокую электронную плотность в алкинах. Одно из объяснений этого заключается в том, что электроны тройной связи удерживаются более прочно из-за меньшего расстояния между атомами углерода поэтому атакующему электрофилу труднее оторвать пару электронов от такой связи. Данные спектроскопии в дальней УФ-области свидетельствуют в пользу этого вывода [71]. Другое возможное объяснение базируется на доступности свободной орбитали алкина. Показано, что я "-орбиталь изогнутых алкинов (таких, как циклооктин) имеет более низкую энергию, чем л -орбиталь алкенов, и предполагается [72], что линейные алкины могут принимать изогнутые конфигурации в переходных состояниях при взаимодействии с электрофилами. В тех случаях, когда электрофильное присоединение включает образова- [c.150]

    Стали доступными тонкие методы исследования состава и структуры поверхности твердых тел (Оже-элекгронная спектроскопия, рентгеновская и ультрафиолетовая фотоэлектронная спектроскопия, спектроскопия дальней тонкой структуры рентгеновских спектров поглощения, масс-спектрометрия вторичных ионов и др.), в немалой степени обусловившие бурное развитие микроэлектроники в последние десятилетия. [c.4]

    Недавние физико-химические исследования (дальняя ИК-, ЯМР-спектроскопия, кондуктометрические измерения) в ТГФ и ДМСО подтвердили, что основным типом енолятов является ионная пара с анионом в и-форме. Особенно поражает тот факт, что соли тетрабутиламмония ведут себя так же, как и соли щелочных металлов. Это указывает на ионность связи в этих ено-лятах и, что еще более важно, на отсутствие жестких требований к положению катиона по отношению к узкой области локализации заряда аниона. В то время как небольшой ион щелочного металла может располагаться на плоскости между 0-атомами (истинный хелат), ион аммония вынужден находиться выше плоскости и-образного аниона [363]. [c.198]

    Это разделение широко используется в квантовой химии и в молекулярной спектроскопии. Исторически оно проводилось еще до появления квантовой механики. Первая попытка обосновать адиабатическое приближение принадлежала Борну и Гейзенбергу (1924 г.), но она оказалась неудачной, так как неправильно был выбран параметр малости, по которому производилось разложение энергии молекулы. Вторая попытка (Борн и Оппенгеймер, 1927 г.) удалась, в результате чего полуинтуитивные рассуждения химиков и спектроскопистов получили квантовомеханическое обоснование. В дальнейшем разработкой этого вопроса занимались как сам Борн, так и многие другие авторы. [c.109]

    В.Гершелем в 1800 г. по нагреву термометра, помещенного в спектроскопе в темную область за красными лучами. Существование плавного перехода от микрорадиоволн (СВЧ) к инфракрасному излучению было экспериментально показано опытами советского физика А.А.Глаголь-евой-Аркадьевой в 1924 г. с помощью так называемого массового излучателя, в котором электрический разряд между металлическими опилками в масле генерировал электромагнитные волны в диапазоне от 82 см до 5 см. Весь диапазон инфракрасных лучей разбивают на три поддиапазона 0,76. .. 1,5 мкм - коротковолновый (ближнее ИК-излу-чение) 1,5. .. 15 мкм - средневолновый 15. .. 1000 мкм - длинноволновый (дальнее ИК-излучение). - [c.94]

    Еще в 1917 г. А.Эйнштейн выдвинул гипотезу о существовании не только спонтанных, но и вынужденных (стимулированных или индуцированных) переходов в атомах, сопровождающихся излучением. Попытка обнаружения стимулированного излучения в газовом разряде была предпринята Р.Ландебурном в 30-е годы, а в 1М0 г. В.А.Фабрикант сформулировал необходимые для этого условия. После второй мировой войны многие физики вернулись в лзбор атории, привнеся в работу опыт, полученный с радиолокационной техникой СВЧ. Одним из таких физиков, занявшихся СВЧ-спектроскопией, — как пишет Дж. Пирс [7], — был Чарльз Таунс. .. В 1951 г., сидя на парковой скамейке в Вашингтоне перед деловой встречей, Таунс впервые представил себе принцип, на котором сейчас базируется действие лазера . В 1954 г., почти одновременно, Н.Г. Басовым и А.М. Прохоровым в СССР (в Физическом институте им. П.Н. Лебедева) и Ч. Таунсом с сотрудниками в США (в Колумбийском университете) был создан первый молекулярный генератор на аммиаке, излучающий радиоволны с длиной волны около 1 см. Эта работа была отмечена Нобелевской премией. В 1960 г. Т. Мейман (фирма Хьюз , США) создал первый в мире рубиновый оптический квантовый генератор. Дальнейшее развитие квантовой электроники и нелинейной оптики — результат работы многих отечественных и зарубежных ученых [8]. [c.96]

    Взаимодействие НХ с катализатором протекает по обратимой реакции с высокой скоростью, при этом образуются комплексы с переносом заряда или ионные пары, что подтверждается методами УФ- и ИК-спектроскопии, изменениял дипольного момента и давления паров (подробнее см. гл. 4) последующее образование (т-комплексов в результате взаимодействия их с аренами является более медленной стадией. Большое влияние на дальнейшее превращение ст-комплексов оказывает основность растворителей. Действительно, если реакцию проводить без растворителей или со слабоосновными растворителями, то образующиеся алкилбензолы, обладающие более основными свойствами, чем исходный бензол, накапливаются в виде комплекса [c.45]

    Спектры ЭПР. Этот вид спектроскопии, в отличие от метода ядерного ре. онанса, связан с магнитным резонансом непарных элект-. ронов. В интенсивном магнитном поле нормальный энергетический/ уровет1Ь электронов меняется так, что энергетический переход наблюдается в микроволновой области. Эта область представляет со- бой часть электромагнитного спектра, которая находится, между дальней инфракрасной и радиочастотной областями, т. е. в области частот от 0,1 до 30 см. Используемая при этом аппаратура аналогична аппаратуре, употребляемой при измерении спектров ЯМР. [c.53]

    Инфракрасные спектры молекул — результат энергетических переходов между различными колебательными, вращательными и реже электронными уровнями под действием электромагнитного излучения. Эти переходы значительно различаются по энергиям пр шерно от 0,4 до 140 кДж/моль. Соответственно различают ближнюю ИК-область в диапазоне примерно от 0,8 до 2,5 мкм (12 500—4000 см- ), в которой наблюдаются электронные и колебательные переходы основную или среднюю ИК-область от 2,5 до 16 мкм (4000—625 см ), связанную в основном с колебаниями модекул, и дальнюю, или длинноволновую, ИК-область от 16 до 200 мкм (625—50 см- ), в которой наблюдаются вращательные пе-ре оды, колебания в тяжелых молекулах, в ионных и молекулярных кристаллах, некоторые электронные переходы в твердых тела , крутильные и скелетно-деформационные колебания в сложных молекулах, например в биополимерах. В настоящее время наибольшее развитие получила спектроскопия в средней ИК-области, в ко орой работает большинство серийных приборов. [c.199]

    Дальнейшие исследования в этом направлении, в частности, проведение количественного анализа методом ИК-спектроскопии фуллеренов С60 в сложных смесях органических соединений нефтяного происхождения, выявили необходимость выбора оптимальной полосы поглощения фуллеренов С60 из имеющихся четырех. Например, как видно из рис. 1.4, в ИК-спектре экстракта фуллеренсодержашего продукта полоса поглощения С60 при 1429 см накладывается на интенсивную полосу поглощения ароматических соединений, также присутствующих в образце, Это значительно затрудняет количественный анализ фуллеренов, в частности, при определении интенсивности данной полосы методом базовой линии, тогда как полоса поглощения С60 при 528 см" идентифицируется намного лучше (рис.4). [c.17]

    Возможность применения инфракрасной спектроскопии для количественного анализа смесей углеводородов обусловила быстрое совершенствование техники и распространение ее в годы второй мировой войны. Инфракрасная спектроскопия дает быстрые и точные методы анализа смесей углеводородов, важных для производства авиационного топлива, синтетического кауч ка и пластмасс, В дальнейшем разработанные методы использовались также для анализа бензинов (в сочетании с ректификацией), нашли применение при анализе аренов в процессах нефтепереработки и др. В настоящее время возможен анализ углеводородов С —Се и частично Сд для смссей алканов п алканов и цикланов Сг—Св и частично Сц—Се для алкенов Се—С для аренов. [c.498]

    При осторожном проведении реакции протолиза растворов солей железа(III) (нитрата, сульфата, аммонийсульфата) при pH 2,2 наблюдается появление красно-коричневого окрашивания вследствие образования коллоидных растворов, содержащих изополиоснования [РеО(ОН)]д . Эти частицы образуются путем конденсации одноядерных гидроксокомплексов. При дальнейшем повышении рЧ раствора происходит полное осаждение железа в виде РегОз-ац. Исследование этих осадков методами ИК-спектроскопии и ЯМР указывают на присутствие в них ОН-групп, что дает основание называть их конденсированными гидроксидами. При старении осадков и при их нагревании процессы конденсации приводят к продуктам с меньшим содержанием воды и в конце концов к безводному оксиду а-Ре20з гематит). [c.637]

    Для малорастворимых твердых веществ можно получить отражательный спектр. При интенсивном измельчении твердого вещества уменьшается часть светового потока, отражающаяся от его поверхности, а большая часть падающего света проникает и глубь вещества. Эта доля частично поглощается, а частично, после м-ногократного отражения снова диффузно выделяется через поверхность вещества наружу. При таком внутреннем отражении ослабляются участки спектра, связанные с абсорбцией света молекулами. Для дальнейшего уменьшения поверхностного отражения порошкообразное вещество можно смешать с веществом, индифферентным в используемой спектральной области (белый стандарт), и получить известную аналогию с раствором вещества. Отражательная спектроскопия пригодна также для получения спектров поглощения малорастворимых веществ. Этот метод применяют в основном при исследовании состава красок и строения неорганических твердых соединений. Абсорбция света окрашенными катионами зависит от различных факторов от координационного числа, симметрии молекулы и межатомных расстояний в кристаллической решетке соединения. По изменению абсорбции можно сделать выводы об изменениях, происходящих в решетке соединения при включении посторонних ионов. [c.355]

    Открытие эффектов магнитного резонанса произошло в середине 40-х годов. В 1944 г. советский физик Е. К. Завойский впервые наблюдал поглощение электромагнитных радиоволн парамагнитным веществом, т. е. ему принадлежит заслуга создания метода ЭПР. Большой вклад в развитие этого метода внесли и дальнейшем также Б. М. Козырев, Д. Ингрэм и многие другие советские и зарубежные ученые. Что касается изучения переходов между ядерными зеемановскими уровнями в магнитном поле и разработки метода ядерного, в частности, протонного магнитного резонанса (ПМР) в конденсированных средах, то первыми в 1946 г. это независимо сделали американские физики Ф. Блох и Э. М. Парселл со своими сотрудниками. Конструирование и серийный выпуск промышленностью ПМР-спектрометров относится к середине 50-х, а ЭПР-спектрометров — к середине 60-х годов. Для спектроскопии ЯМР на других отличных от протонов ядрах приборы высокого разрешения стали производиться в 60—70-х годах. Бурное развитие и совершенствование экспериментальных и расчетных методов ЯМР и ЭПР на базе современной техники и ЭВМ за последние десятилетия привело к широкому и плодотворному их внедрению в химические исследования. [c.6]

    Излучение в дальней инфракрасной и микроволновой областях, обладающее низкой энергией, вызывает в молекулах чисто вращательные переходы. В отличие от инфракрасной микроволновая спектроскопия позволяет производить измерения частот с высокой точностью. Так, если точность изрешения частот в ИК-области на обычных спектрометрах составляет 1 см , а размещение даже несколько СМ , то в микроволновой области удается получить разрешение до 10 см . Дальняя ИК-область и область микроволновых частот занимают участок от 10 до 10 см . Достаточно широкий спектральный интервал и высокое разрешение делают эту [c.171]

    Механизм удаления силанольных групп с поверхности уже в значительной степени дегидроксилированных кремнеземов, а также распределение силанольных групп на разных стадиях дегидроксилирования еще не выяснен. Наиболее ценные сведения о термическом дегидроксилировании поверхности высокодисперсных крем-неземов получены методом ИК спектроскопии. Дегидроксилирование поверхности осуществляется не только за счет силанольных групп, возмущенных по водороду (полоса 3390 см ) и кислороду (полосы 3730 и 3742 см ), но частично и за счет свободных силанольных групп поверхности (полоса 3750 см ). Таким образом, в результате обработки в ваку уме при 200°С сильно гидроксилированной поверхности кремнезема с нее удаляются не только возмущенные взаимной водородной связью силанольные пары, но отчасти и изолированные силанольные группы. В процессе дальнейшего дегидроксилирования при повышении температуры (см, рис, 3.7) на поверхности кремнезема остаются преимущественно изолированные силанольные группы. Узкая полоса, соответствующая колебаниям свободных, т. е. не возм ущенных по водороду силанольных групп, сохраняется в спектрах кремнезема, обработанного при значительно более высоких температурах (рис. 3.9). ИК спектры аэросила, полученные после прокаливания образца при 700—1000°С, показывают, что полоса он = 3750 см- мало возмущена водородной связью (узкий, почти симметричный контур). Уменьшение оптической плотности этой полосы с повышением температуры предварительной обработки образца вызывается уменьшением поверхностной концентрации свободных силанольных групп. Слабая низкочастотная асимметрия полосы, сохраняющаяся вплоть до обработки образца при 1000°С, связана с неоднородностью взаимодействия остающихся силанольных групп с соседними силоксановыми группами аморфных кремнеземов. [c.62]

    Из истории открытия ЯМР-спектроскопии. Явление ядер- ного магнитного резонанса (ЯМР) впервые наблюдали в 11945 году независимо в двух физических лабораториях США. Одну из них возглавлял Ф. Блох, другую — Э. Пурселл. Открытое ими явление вначале смогли оценить только физики. Однако в дальнейшем оно легло в основу весьма мощного и исключительно полезного метода исследования в различных областях химии. За это открытие Э. Пурселл и Ф. Блох были удостоены Нобелевской премии в 1952 году. [c.5]


Смотреть страницы где упоминается термин спектроскопия дальняя: [c.312]    [c.311]    [c.133]    [c.56]    [c.3]    [c.673]    [c.249]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.229 , c.262 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.229 , c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Дальняя инфракрасная спектроскопия

Спектроскопия в дальней области



© 2024 chem21.info Реклама на сайте