Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий радиоактивный

    Радиоактивность природных вод в основном вызвана присутствием в ней естественных радиоактивных изотопов калия, радия, радона, урана и некоторых искусственных, образованных ядерными взрывами или авариями, — стронция, иттрия, цезия. Их периоды полураспада составляют  [c.412]

    Рубидий и цезий содержатся в минералах калия. Франций радиоактивен, стабильных изотопов не имеет. Он открыт в 1939 г. в продуктах радиоактивного распада урана (4 10 г на 1 г природного [c.490]


    В современной ядерной технике используются изотопы лития, натрия и цезия. Изотоп является исходным продуктом для получения трития ( Н) — сверхтяжелого радиоактивного изотопа водорода — по следующей ядерной реакции  [c.34]

    Среди радиоактивных веществ, попадающих в атмосферу в результате ядерных испытаний, наибольшую опасность для человека представляют такие радиоактивные изотопы, как стронций 90, цезий 137 и иод 131. Написать химические символы этих изотопов. Сколько нейтронов содержит ядро каждого из них  [c.41]

    Перед осаждением рубидия и цезия радиоактивные растворы предварительно концентрируют либо упариванием в вакууме, либо упариванием с добавлением формальдегида для разрушения НЫОз [10]  [c.132]

    В таком варианте ГПС [148] весьма селективны по отношению к цезию и дают отличные результаты при извлечении его из радиоактивных растворов, содержащих продукты деления и значительное количество ионов калия. Цезий из таких растворов с молярным соотношением Сз К от 1 до 1-10" извлекается на 70—99,9%. При микроколичествах К, НЬ и Сз коэффициент разделения, например, пары КЬ—Сз на фосфоромолибдате аммония равен 26, в то время как на смоле дауэкс-50 — не более 1,5. Возможно разделять и макроколичества К — НЬ, НЬ — Сз [117]. [c.135]

    Перед осаждением рубидия и цезия радиоактивные растворы предварительно концентрируют либо упариванием в вакууме, либо упариванием с добавлением формальдегида для разрушения азотной кислоты [311]. В последнем случае на 1 объем упариваемого радиоактивного раствора добавляют порциями 0,75 объема 40%-ного формальдегида  [c.321]

    В природе щелочные металлы находятся в виде хлоридов, сложных алюмосиликатов, сульфатов и в других соединениях. Наиболее распространенным элементом является натрий. Рубидий и цезий содержатся в минералах калия. Калий и рубидий слабо радиоактивны. Франций — радиоактивный элемент, не имеет долгоживущих изотопов. [c.251]

    В больпшнстве рек России концентрация радионуклидов не превышает допустимых уровней Однако в озерах Брянской обласги, где плотность загрязнения почвы цезием-137 выше 40 Ки/м , содержание этого элемента близко к ВДУ или превьппает его. Высокие концентрации стронция-90 наблюдаются в реке Теча на Южном Урале в зоне влияния ПО Маяк . На этом предприятии особую озабоченность вызывает сосредоточение средне- и низкоактивных жидких радиоактивных отходов в водоемах-хранилищах, в том числе в озере Карачай. Около 350 млн.м за-грязненной воды накоплено в каскаде водоемов в пойме реки Теча после прекращения сбросов в нее отходов производства. [c.46]


    Рубидий и цезий содержатся в минералах калия. Франций радиоактивен, стабильных изотопов не имеет. Он открыт в 1939 г. в продуктах радиоактивного распада урана (4-10 г на 1 г природного урана). Его получают искусственно. Наиболее долгоживущий изотоп Тг (Ti/ =20 мин) образуется при облучении урана протонами  [c.593]

    В технологии извлечения цезия и рубидия из сбросных растворов, остающихся после экстракционного извлечения урана и плутония, надо учитывать высокую радиоактивность водной фазы. Поэтому реальные схемы переработки радиоактивных растворов должны быть максимально просты, а аппаратура процессов — надежна в эксплуатации в условиях сильного облучения. Среди рассмотренных выше методов промышленного выделения цезия и рубидия из радиоактивных растворов необходимым условиям больше других отвечают экстракционный и ферроцианидный [10]. [c.137]

    Подгруппу лития составляют следующие элементы литий (Ы), натрий (N3), калий (К), рубидий (КЬ), цезий (Сз) и радиоактивный, искусственно полученный франций (Рг). Все они являются металлами высокой активности объединяются под общим названием щелоч- [c.48]

    Элементы литий Ы, натрий Ма, калий К, рубидий КЬ, цезий Сз и франций Рг составляют 1А группу Периодической системы Д. И. Менделеева. Франций — радиоактивный элемент, его наиболее долгоживущий изотоп з зрг имеет период полураспада, равный 22 мин. Групповое название элементов 1А 1 руппы — щелочные металлы. [c.195]

    Радиоактивный изотоп цезия Сз (Т1/2=3 года) применяют в у-дефектоскопии металлических отливок благодаря относительно высокому значению энергии -излучения. [c.34]

    Радиоактивное загрязнение технологического оборудования, окружающей среды в цикле нефтегазодобычи обусловлена присутствием в пластовой воде естественных радионуклидов семейств урана-238, тория-232. В некоторых регионах дополнительное воздействие оказывают радионуклиды искусственного происхождения цезий-137 и стронций-90. Повсеместно присутствует естественный радионуклид калий-40, создающий дополнительный вклад в дозу облучения. [c.94]

    Характеристика. Металлы литий натрий Ыа, калий К, р у б и д и й КЬ, цезий Сз и искусственно полученный радиоактивный франций Рг (период полураспада Fг=20 мин), образующие 1А-группу, называются щелочными, так как их оксиды [c.296]

    Цезий встречается в природе только в виде одного стабильного изотопа s-133. Искусственно полученные радиоактивные изотопы цезия с массовыми числами менее 133 обладают позитронной активностью, а более 133 — (3-активностью. Среди искусственно полученных изотопов цезия встречаются не только крайне неустойчивые, но и такие, период полураспада которых измеряется многими днями и даже годами примером может служить s-137, имеющий 7/2 — 33 года [6, 12]. [c.83]

    Извлекают рубидий из отработанного электролита методом, предложенным И. В. Тананаевым и сотр. [121, 125, 127, 128] и позднее примененным другими авторами для выделения цезия из радиоактивных отходов [10]. Метод основан на способности осадков, содержащих смесь ферроцианида железа (берлинская лазурь) и ферроцианида никеля, извлекать из растворов незначительное количество рубидия и цезия. [c.129]

    Ферроцианидный метод [230] во многом напоминает описанный выше для извлечения рубидия и цезия из карналлита и радиоактивных отходов. Во всех вариантах рубидий и цезий осаждают в виде смешанных ферроцианидов кальция или магния. [c.138]

    При переработке поллуцита, литиевых и калиевых минералов, радиоактивных отходов и других сырьевых источников получают рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов и других солей. Такие концентраты содержат примеси К, На, Mg. Са, 81, А1, Ре, Сг, Т1 и других элементов. Из них калий наиболее близок по химическим свойствам к рубидию и цезию, поэтому их разделение (особенно пары калий — рубидий) — самая трудная проблема в технологии получения чистых солей рубидия и цезия. В связи с этим в дальнейшем будут в основном рассмотрены методы, связанные с решением упомянутой проблемы, а также возможность удаления других примесей. [c.138]

    Последнее время усиленно изучается обменная сорбция К , Rb" и s на ионитах минерального происхождения, таких, как цеолиты, анальцим фосфат, молибдат и вольфрамат циркония. В ряде случаев было показано, что калий, рубидий и цезий лучше разделяются на минеральных ионитах, чем на органических. Минеральные иониты благодаря своему регулярному и относительно жесткому каркасу обладают по сравнению со смолами более высокой селективностью к отдельным щелочным металлам, превосходят органические иониты по устойчивости н действию высокой температуры и радиоактивного излучения. К сожалению, минеральные иониты не отличаются достаточной химической стойкостью и часто склонны к пептизации, что, естественно, ограничивает область их применения. [c.145]

    Извлечение рубидия и цезия из радиоактивных отходов. В связи с развитием ядерной энергетики переработка радиоактивных отходов энергетических реакторов превратилась в серьезную проблему. Появилось много исследований по выделению ряда элементов из растворов низких концентраций, что объясняется как необходимостью очистки сточных вод от продуктов деления перед сбросом, так и самостоятельным интересом к получению некоторых соединений и препаратов. Примером может служить получение у-источников, главным образом на основе s-137, которые используются в различных отраслях народного хозяйства [10]. Среди радиоактивных отходов s-137 — долгоживущий радиоактивный изотоп — занимает особое место. Он выделяется при реакции деления в относительно большом количестве и определяет активность продуктов деления после длительного периода их охлаждения . Поэтому выделение цезпя (и стронция) из радиоактивных отходов — решающий вопрос для безопасности длительного хранения отходов. Селективное выделение рубидия из радиоактивных растворов представляет практический интерес из-за стабильности его изотопов - [c.131]


    Закономерно изменяются свойства элементов в подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические. Очевидно, металлические свойства наиболее сильно выражены у франция (франций — радиоактивный элемент, получен искусственным путем, мало изучен), затем у цезия неметаллические — у фтора. [c.188]

    Поскольку связывание растворенных РВ происходит за счет реакций комплекеообразования и адсорбции на продуктах гидролиза коагулянта, удаление РВ носит избирательный характер. С помощью сернокислого алюминия удалялось, например, около половины содержащегося в воде стронция и рутения и лишь 20% цезия. Радиоактивный фосфор снимался на 96,8% [138]. [c.227]

    Отсюда следует, что самый типичный неметаллический элемент — это фтор Р, самый типичный металлический элемент—-это цезий Сз (если не рассматривать элементы седьмого незаконченного периода, в частвюсти аналог цезия — радиоактивный элемент франций Рг). [c.106]

    В качестве источников ионизирующих излучений применяют естественные и искусственные радиоактивные изотопы. Наиболее распространены как источники у-из.лучения пядиоактивные изотопы кобальта Со ° и цезия Радиоактивный изотоп Со ° получается при облучении кобальта нейтронами в ядерном реакторе. Период полураспада Со ° 5,24 года, энергия улучей составляет 1,25 Мэе. Энергия -лучей равна 0,661 Мэе. Период полураспада радиоактивного цезия 26,6 года. [c.272]

    Следует заметить также, что степень опасности радионуклидов зависит не только от характеристики радиоактивного излучения, но и от их способности накапливаться в живых организмах. Быстрее всего из организма выводятся висмут, родий, бром, серебро, кобальт, №1трий, углерод (пфиод полувыведения от 1 до 10 суток). Для теллура, цезия, бария, меди, рубидия, серы, хлора, калия, скандия, магния и сурьмы эта величина составляет от 10 до 100 суток, а для железа, хрома, цинка, мьппьяка, урана, тория, редкоземельных элементов, бериллия, фтора, фосфора - ог 100 до 1000 суток. Период полувьшедения свинца, радия, нептуния, плутония, америция и кальция превьппает 1000 суток [184]. [c.101]

    РУБИДИЙ (Rubidium, название от характерных линий спектра, лат. rubidus — темно-красный) Rb — химический элемент I группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 37, ат. м. 85,4678. Природный Р. состоит из двух изотопов, один из которых радиоактивен. Известны 16 искусственных радиоактивных изотонон. Р. открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом спектральным анализом минеральных вод. Получают Р. вместе с цезием из карналлита и лепидолита. Самостоятельных минералов не имеет. Р.— мягкий серебристо-белый металл, химически активен, самовоспламеняется на воздухе, с водой и кислотами взаимодействует со взрывом. В соединениях Р. одновалентен. Среди солей Р. важнейшие галогениды, сульфат, карбонат и некоторые др. Р. применяют для изготовления фотоэлементов, газосветных трубок, сплавов, в которых Р. является газопоглотителем, для удаления следов воздуха из вакуумных ламп соединения Р. применяют в медицине, в аналитической химии и др. [c.216]

    ФРАНЦИЙ (Fran ium, в честь Франции) Fr — радиоактивный химический элемент I группы 7-го периода периодической системы элементов Д. И. Менделеева, п. н. 87, массовое число самого долгоживущего изотопа 223. Стабильных изотопов не имеет. Известны 9 радиоактивных изотопов. Единственный изотоп, встречающийся в природе (Т,1 = 21 мин), открыт в 1939 г. М. Пере как продукт а-распада As. В химическом отношении Ф.— типичный щелочной металл, аналог цезия. [c.269]

    Натрий и калий широко распространены в природе, а литий, рубидий и цезий-редкие элементы. Литий содержится в нескольких силикатных минералах, а рубидий и цезий-спутники калия в соляных пластах, минералах и в воде минеральных источников. Франций - радиоактивный элемент, его наиболее долгоживуший изотоп имеет [c.165]

    Ядра атомов элементов 1А-группы характеризуются нечетными величинами заряда, а потому число устойчивых изотопов у них невелико (табл. 1). Натрий и цезий — моноизотопные элементы у лития и калия в природной смеси по два устойчивых изотопа. Среди природных изотопов калия и рубидия имеется по одному радиоактивному изотопу с относительно большими периодами полураспада (1,32 х X 10 и 5-10 лет). У франция устойчивых изотопов нет в настоящее время известны 8 радиоактивных изотопов его с малыми периодами полураспада. Наиболее устойчивым из них является изотоп 8fFг Т /2=2 мин), который впервые был выделен в 1939 г. [c.34]

    Рассматривая свойства элементов периодической системы, мы будем говорить не только о их химических характеристиках, но и радиоактивных свойствах, Поскольку последние часто не менее важны и интересны. В наши дни производство радиоактивных изотопов для некоторых элементов становится более важным, чем производст1во стабильных изотопов. Например, сейчас радиоактивный цезий изготовляется по стоимости продукции на значительно большую сумму, чем добывается из недр земли обычного стабильного цезия. Не менее важна проблема обезвреживания и захоронения радиоактивных отходов, разработка экологически безопасных методов использования радиоактивных изотопов и элементов, например при работе АЭС. [c.215]

    За исключением натрия и цезия, все элементы обладают несколькими стабильными изотопами (в таблице приведены только природные изотопы, нскусственно полученные радиоактивные изотопы не указаны, кроме франция). [c.230]

    Глауконит и вермикулит представляют собой железо-алюмосиликаты, содержащие магний и калий. В природе глауконит встречается обычно в виде глауконитового песка, окрашенного в зеленые тона, причем интенсивность окрашивания определяется содержанием коллоиднодисперсного минерала глауконита, сцементированного крем-некислотой. В реакцию обмена вступают лишь ионы калия. Глауконитовый песок обладает ничтожной пористостью и ионный обмен происходит преимущественно на внешней поверхности, поэтому его обменная емкость невелика (см. табл. 1). Обменными катионами у вермикулита являются магний и калий. Вермикулит проявляет поразительную селективность по отношению к определенным катионам. Так, было обнаружено, что из раствора 0,1 н. Na I -f +0,001 H. s l образец вермикулита поглотил 96,2% цезия и 3,8% натрия. Такую же высокую избирательность поглощения вермикулит проявляет и в отношении к микроколичествам ионов стронция в присутствии высоких концентраций солей натрия. Это свойство позволило применить вермикулит в качестве сорбента для поглощения радиоактивных примесей при дезактивации сточных вод. [c.40]

    Важной проблемой в анализе является концентрирование веществ перед их качественным и количественным ол-ределением в сильноразбавленных растворах (природные, промышленные воды). Исключительно важно концентрирование радиоактивных элементов, в частности при определении в воде радиоактивных стронция, цезия, кобальта [80]. Через колонку с небольшим количеством ионитной смолы пропускаются большие объемы жидкостей, содержащих низкие концентрации улавливаемых ионов. При последующем отмывании колонки соответствующим реактивом извлекают улавливаемое вещество. Степень концентрирования определяется емкостью ионита, его типом, исходной концентрацией элюирующего раствора. Вытесняя поглощенные колонкой ионы, можно осуществить обогащение раствора в 20—40 и более раз [81 ]. [c.142]

    Характеристика. Металлы литий Ы, натрий N8, калий К, рубидий КЬ, цезий Сз и искусственно полученный радиоактивный франций Гг (период полураспада равен 20 мин), образующие 1А-группу, называются щелочными, так как их оксиды общей формулы МвзО имеют сильноосновныч характер, и образуемые ими гидроксиды (МеОН) являются сильными электролитами — щелочами. [c.397]

    Для удаления продуктов деления из урановых стержней последние растворяют в HNO3. Кислый раствор уранилнитрата U02(N03)2 после добавления NaNOa экстрагируют, например, трибутилфосфа-том (ТБФ) в непрерывном противоточном экстракторе (пурекс-про-цесс). Все радиоактивные отходы, в том числе цезий и рубидий, кон- [c.131]

    Известно шесть методов промышленного выделения цезия и рубидия из радиоактивных отходов. На некоторых зарубежных заводах (например, на заводе Окриджской национальной лаборатории, США) применяют метод соосаждения цезия с алюмо-аммонийными квасцами [10, 211, 213]. При этом радиоактивный раствор первоначально нейтрализуют аммиаком до pH 2—3 для почти полного (90—99%) соосаждения с Ре(ОН)з примесей Ва, La, Се, V, Ru, Тс, Со и др. Затем 50%-ным раствором NaOH, содержащим соду, выделяют основную массу щелочноземельных, редкоземельных металлов и Na2U207. В фильтрате, подкисленном и нагретом до 90°, растворяют алюмо-аммонийные квасцы до достижения их концентрации 240 г/л. После охлаждения раствора до 4—25° квасцы отделяют (извлечение цезия до 90°) и два-три раза перекристаллизовывают. Полученные таким образом [c.132]

    Ацидогалогенидный метод. Выделение ацидогалогенидных соединений цезия и рубидия из радиоактивных растворов основывается на присутствии в последних значительного количества Мо, Те, Ru, при определенном сочетании которых могут образоваться малорастворимые соли этого типа. Вместе с рубидием и цезием из растворов будут выделяться и другие ценные элементы. [c.133]

    Ионообменный метод. Реализация ионообменного процесса применительно к извлечению цезия и рубидия из радиоактивных растворов сопряжена с большими трудностями, так как адсорбцию малых количеств цезия и рубидия приходится проводить из растворов с большой интенсивностью ионизирующего излучения и высокой концентрацией посторонних солей. Следовательно, сорбенты должны быть максимально селективны и устойчивы к радиолизу. На практике испытаны ионообменные смолы, природные и синтетические минеральные гели, активные угли. При этом выявлены преимущества природных алюмосиликатов (глаукониты, монтмориллониты) и фосфатов циркония [216, 217]. Оказалось [2161, что цезий и рубидий лучше других катионов сорбируются на глауконите — железоалюмосиликате, сцемен- [c.133]

    Для извлечения цезия и рубидия радиоактивный раствор пропускают через глауконитовую колонку, которую затем промывают 0,1 и. раствором (ЫН гСОз для удаления основной части солей калия и натрия. После этого цезий и рубидий десорбируют 1—2 н. раствором (N1 4)2003. Отработанный десорбент упаривают, интенсивно перемешивая его воздухом. После удаления ЫНз и СО2 обрабатывают его ферроцианидом никеля для связывания цезия и рубидия [2161. Глауконитовую колонку вновь используют для сорбции цезия. [c.134]

    Первый путь основан на связывании ионов рубидия и цезия в нейтральные, крупные, гидрофобные молекулы с небольшой степенью ионизации (дипикриламинаты, полииодиодааты, тетраиодвисмутаты, тетрафенилбораты, гексафторофосфаты и другие соединения, легко извлекаемые полярными органическими растворителями из водной фазы). Этот путь уже нашел промышленное применение при извлечении рубидия и цезия из радиоактивных растворов (см. выше). Основной его недостаток с увеличением кислотности и концентрации щелочных металлов в водном растворе меньше извлекается рубидия и цезия. [c.146]


Библиография для Цезий радиоактивный: [c.163]   
Смотреть страницы где упоминается термин Цезий радиоактивный: [c.324]    [c.360]    [c.590]    [c.132]   
Введение в радиационную химию (1963) -- [ c.34 ]

Учебник общей химии 1963 (0) -- [ c.456 ]

Химия изотопов Издание 2 (1957) -- [ c.433 ]

Основы общей химии Том 3 (1970) -- [ c.357 , c.359 ]




ПОИСК





Смотрите так же термины и статьи:

Извлечение рубидия и цезия из радиоактивных отходов

Определение радиоактивного цезия (Е. Н. Беляева)

Спектрометрический метод определения радиоактивного цезия-137 в аэрозолях атмосферного воздуха

Удаление радиоактивного цезия

Цезий

Цезий в радиоактивных отходах

Цезий выделение из радиоактивных отходов

Цезий переработка радиоактивных

Цезий переработка радиоактивных отходов

Цезий цезий



© 2025 chem21.info Реклама на сайте