Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий в радиоактивных отходах

    В больпшнстве рек России концентрация радионуклидов не превышает допустимых уровней Однако в озерах Брянской обласги, где плотность загрязнения почвы цезием-137 выше 40 Ки/м , содержание этого элемента близко к ВДУ или превьппает его. Высокие концентрации стронция-90 наблюдаются в реке Теча на Южном Урале в зоне влияния ПО Маяк . На этом предприятии особую озабоченность вызывает сосредоточение средне- и низкоактивных жидких радиоактивных отходов в водоемах-хранилищах, в том числе в озере Карачай. Около 350 млн.м за-грязненной воды накоплено в каскаде водоемов в пойме реки Теча после прекращения сбросов в нее отходов производства. [c.46]


    Извлекают рубидий из отработанного электролита методом, предложенным И. В. Тананаевым и сотр. [121, 125, 127, 128] и позднее примененным другими авторами для выделения цезия из радиоактивных отходов [10]. Метод основан на способности осадков, содержащих смесь ферроцианида железа (берлинская лазурь) и ферроцианида никеля, извлекать из растворов незначительное количество рубидия и цезия. [c.129]

    Ферроцианидный метод [230] во многом напоминает описанный выше для извлечения рубидия и цезия из карналлита и радиоактивных отходов. Во всех вариантах рубидий и цезий осаждают в виде смешанных ферроцианидов кальция или магния. [c.138]

    При переработке поллуцита, литиевых и калиевых минералов, радиоактивных отходов и других сырьевых источников получают рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов и других солей. Такие концентраты содержат примеси К, На, Mg. Са, 81, А1, Ре, Сг, Т1 и других элементов. Из них калий наиболее близок по химическим свойствам к рубидию и цезию, поэтому их разделение (особенно пары калий — рубидий) — самая трудная проблема в технологии получения чистых солей рубидия и цезия. В связи с этим в дальнейшем будут в основном рассмотрены методы, связанные с решением упомянутой проблемы, а также возможность удаления других примесей. [c.138]

    В США разработаны методы с применением клиноптилолита для извлечения цезия из радиоактивных отходов и удаления аммиака пз сточных вод. [c.109]

    Технология лития, рубидия и цезия рассмотрена применительно к переработке всех важнейших типов минерального сырья, включая проблему переработки радиоактивных отходов и галургическую проблему переработки рапы соляных озер и рассолов морского типа. Описаны методы получения металлических лития, рубидия и цезия и их соединений различной степени чистоты. [c.2]

    Извлечение рубидия из отработанного электролита производят по методу, предложенному И. В. Тананаевым и его сотр. [268, 282—284] и использованному впоследствии другими исследователями для выделения цезия из радиоактивных отходов [285, 286] и из природного соликамского карналлита [287]. Метод основан на способности осадков смешанных ферроцианидов железа (берлинская лазурь) и ферроцианидов никеля извлекать из растворов незначительные количества рубидия и цезия. [c.312]

    Другие способы выделения и разложения ферроцианидных осадков приведены в разделе Извлечение рубидия и цезия из радиоактивных отходов . [c.314]


    Ферроцианидный метод [303, 3041 переработки морской воды во многом напоминает описанные выше ферроцианидные методы извлечения рубидия и цезия из карналлитов и из радиоактивных отходов (см. следующий раздел). [c.318]

    Извлечение рубидия и цезия из радиоактивных отходов [c.319]

    Поэтому вопросы выделения цезия (наряду со стронцием) из радиоактивных отходов являются определяющими при решении задачи повышения безопасности длительного хранения отходов. Но необходимость извлечения цезия диктуется не только этими задачами, она также связана с возрастающей потребностью в радиоактивном цезии различных отраслей народного хозяйства, использующих такие процессы, как консервирование, пастеризация, стерилизация, дезинфекция, возбуждение химических реакций, вулканизация, полимеризация и т. п. [c.320]

    На рис. 34 приведен один из вариантов технологической схемы переработки радиоактивных отходов с применением в качестве со-осадителя ферроцианида цинка и калия. Использование этого со-осадителя особенно полезно для бедных цезием (меньше 0,001 моль/л) радиоактивных растворов [286]. Эти растворы обрабатывают [335] аммиаком до pH = 2—3, осадок гидроокиси железа вместе с примесями плутония, циркония и ниобия отфильтровывают. Фильтрат нейтрализуют едким натром до рН=12—13 и осадок диураната натрия вместе с примесями гидроокисей стронция и редкоземельных элементов удаляют. Предварительная подготовка раствора может быть осуществлена и несколько иным путем- Радиоактивный раствор нейтрализуют едким натром до pH = 7, фильтрат (после отделения гидроокисей железа, алюминия, хрома) подкисляют соляной кислотой до рН = 3,5- и пропускают через катионит (леватит 5 = 100) в натриевой форме [336]. [c.328]

    Большое внимание [308, 311] уделяется высокотемпературной вакуумной обработке делящегося вещества для выделения из последнего ряда радиоактивных отходов, прежде всего s и °Sг. Оказалось, что при 1680° С и давлении меньше 10 атм из металлического урана испаряется почти полностью рубидий и цезий (на 99,8%) стронций, барий, олово, кальций, сурьма и редкоземельные элементы (на 99%) теллур (на 95%). При этом вместе с цезием из урана возгоняется до 98,6% плутония. Однако широкое применение вакуумной возгонки для извлечения рубидия и цезия из делящегося вещества зависит от успешного решения двух важных вопросов создания жаростойких конструкционных материалов и коллектора для плутония. [c.333]

    Применяется для удаления цезия из радиоактивных отходов [75]. Способность цеолита А с высокой селективностью ( а=83) обменивать натрий на стронций представляет определенный интерес для извлечения малых количеств радиоактивных изотопов стронция [75]. [c.598]

    Извлечение рубидия и цезия из радиоактивных отходов. В связи с развитием ядерной энергетики переработка радиоактивных отходов энергетических реакторов превратилась в серьезную проблему. Появилось много исследований по выделению ряда элементов из растворов низких концентраций, что объясняется как необходимостью очистки сточных вод от продуктов деления перед сбросом, так и самостоятельным интересом к получению некоторых соединений и препаратов. Примером может служить получение у-источников, главным образом на основе s-137, которые используются в различных отраслях народного хозяйства [10]. Среди радиоактивных отходов s-137 — долгоживущий радиоактивный изотоп — занимает особое место. Он выделяется при реакции деления в относительно большом количестве и определяет активность продуктов деления после длительного периода их охлаждения . Поэтому выделение цезия (и стронция) из радиоактивных отходов — решающий вопрос для безопасности длительного хранения отходов. Селективное выделение рубидия из радиоактивных растворов представляет практический интерес из-за стабильности его изотопов - [c.131]

    Деионизация кукурузной патоки. Избирательное извлечение цезия из радиоактивных отходов. Извлечение алкалоидов [c.36]

    Рассматривая свойства элементов периодической системы, мы будем говорить не только о их химических характеристиках, но и радиоактивных свойствах, Поскольку последние часто не менее важны и интересны. В наши дни производство радиоактивных изотопов для некоторых элементов становится более важным, чем производст1во стабильных изотопов. Например, сейчас радиоактивный цезий изготовляется по стоимости продукции на значительно большую сумму, чем добывается из недр земли обычного стабильного цезия. Не менее важна проблема обезвреживания и захоронения радиоактивных отходов, разработка экологически безопасных методов использования радиоактивных изотопов и элементов, например при работе АЭС. [c.215]

    Для удаления продуктов деления из урановых стержней последние растворяют в HNO3. Кислый раствор уранилнитрата U02(N03)2 после добавления NaNOa экстрагируют, например, трибутилфосфа-том (ТБФ) в непрерывном противоточном экстракторе (пурекс-про-цесс). Все радиоактивные отходы, в том числе цезий и рубидий, кон- [c.131]


    Известно шесть методов промышленного выделения цезия и рубидия из радиоактивных отходов. На некоторых зарубежных заводах (например, на заводе Окриджской национальной лаборатории, США) применяют метод соосаждения цезия с алюмо-аммонийными квасцами [10, 211, 213]. При этом радиоактивный раствор первоначально нейтрализуют аммиаком до pH 2—3 для почти полного (90—99%) соосаждения с Ре(ОН)з примесей Ва, La, Се, V, Ru, Тс, Со и др. Затем 50%-ным раствором NaOH, содержащим соду, выделяют основную массу щелочноземельных, редкоземельных металлов и Na2U207. В фильтрате, подкисленном и нагретом до 90°, растворяют алюмо-аммонийные квасцы до достижения их концентрации 240 г/л. После охлаждения раствора до 4—25° квасцы отделяют (извлечение цезия до 90°) и два-три раза перекристаллизовывают. Полученные таким образом [c.132]

    Для удаления продуктов деления из урановых стержней последние растворяют в азотной кислоте и образующийся кислый раствор уранилнитрата после добавления нитрата натрия экстрагируют трибутилфосфатом в непрерывном противоточном экстракторе (пурекс-процесс). Все радиоактивные отходы, в том числе цезий и рубидий, концентрируются в водной, а уран и плутоний — в органической фазе. Применяются и другие процессы [308, 311] разделения ядерного горючего (бутекс-процесс , висмут-фосфат-ный процесс, редокс-процесс , ТТА-процесс, торекс-процесс и т. д.). От этих процессов зависит состав радиоактивных отходов (табл. 20) и в конечном итоге — выбор того или иного метода выделения цезия и рубидия [286, 311—315]. [c.320]

    Как мы уже отмечали, метод выделения цезия и рубидия из радиоактивных отходов зависит от состава отходов. Так, осаждение цезия с алюмоаммонийными квасцами из растворов от бу-текс- и пурекс-процессов возможно только после введения в раствор большого количества сульфата алюминия и предварительного удаления железа и циркония. Соосаждение цезия и рубидия с фосфоровольфраматом аммония, эффективное для растворов от бутекс-процесса, будет давать небольшой выход при использовании отходов от пурекс- и редокс-процессов вследствие небольшой концентрации цезия в исходных растворах [311]. [c.321]

    Для выделения цезия из радиоактивных отходов был опробован в промышленных условиях (завод в Маркуле, Франция по-лузаводская установка в Уиндскейле, Англия) и другой широко известный метод осаждения, основанный на использовании гетерополикислот. Среди всех исследованных гетерополисоединений цезия наименее растворимы в воде фосфоровольфраматы и кремневольфраматы [309, 311, 320—325]. Предпочтение в данном случае отдается менее растворимым фосфоровольфраматам, которые к тому же в присутствии кислот и различных солей быстрее отстаиваются и лучше декантируются. Осаждение более растворимых в воде кремневольфраматов рубидия и цезия [325] вызвало бы большие потери рубидия и отчасти цезия, хотя в этом случае цезиевые осадки содержали примесь калия в меньшем количестве. Извлечение цезия при осаждении фосфоровольфраматов и кремневольфраматов составляет соответственно 99,9 и 90% [321, 325]. [c.324]

    Экстракционный метод [327—334] выделения цезия и рубидия из радиоактивных отходов основан на способности полииодиодаатов, полибромбромаатов, дипикриламинатов и некоторых других соединений цезия и рубидия концентрироваться в органической фазе при обработке водного раствора этих комплексных соединений органическими растворителями. [c.325]

Рис. 35. Технологическая схема извлечения цезии из радиоактивных отходов ацидогалоидиым методом. Рис. 35. <a href="/info/767939">Технологическая схема извлечения</a> цезии из <a href="/info/165346">радиоактивных отходов</a> ацидогалоидиым методом.
    Для извлечения цезия и рубидия из радиоактивных отходов предлагают также и ионообменные методы. В связи с тем, что сорбцию небольших количеств цезия и рубидия приходится проводить из растворов с большой интенсивностью ионизирующего излучения и высокой концентрацией посторонних солей, к сорбентам предъявляются особые требования в отношении селективности и устойчивости к радиолизу. Испытания значительного числа ионообменных смол, природных и искусственных минеральных гелей, активных углей и других сорбентов показали преимущества использования некоторых природных алюмосиликатов (глаукониты, монтмориллониты) и фосфатов циркония [287, 337, 3381. Оказалось [287], что цезий и рубидий лучше других катионов, даже двух- и трехвалентных, сорбируются на глауконите—железоалюмосили-кате, сцементированном кремневой кислотой и ее солями в зерна различной величины. Глауконитовый песок обычно содержит (вес. %) К2О 3—12 MgO 1—6 FeO и РегОз — по 3—24 и SiOo 43—58 [339]. [c.333]

    В результате переработки поллуцита, литиевых и калиевых мийералов, радиоактивных отходов, рапы соляных озер и рассо- лов морского типа получаются рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов, нитратов и других солей рубидия и цезия. Такие концентраты содержат примеси калия, натрия, магния, кальция, кремния, алюминия, железа, хрома, титана и др. [c.334]

    Во временных хранилищах выдерживают высокоактивные жидкие и твердые радиоактивные отходы. В этом случае очень важно соблюдение теплового режима хранения - отвод теплоты, выделяющейся при распаде. В 1957 г. на Южном Урале произошел тепловой взрыв одной из емкостей с высокоактивными отходами, содержащими радионуклиды церия, празедима, циркония, ниобия, рутения, родия, стронция, иттрия и цезия. Облако радиоактивных отходов прошло над Челябинской, Свердловской и Тюменской областями, захватив 217 населенных пунктов. [c.500]

    Основные научные исследования посвящены неорганической химии и физической химии редких и радиоактивных элементов, комплексных соединений. Его ранние работы в области химии молибдена и вольфрама, в частности по изучению состава изополивольфраматов и реакций их восстановления, получению химически чистого молиб-дата аммония и др., были использованы в 1920-х при организации отечественного производства вольфрама и молибдена. Результаты работ по хлорированию окислов бери.илия, ниобия, тантала и других элементов (1928—1934) нашли применение при организации производства этих металлов. Осуществил (с 1938) цикл работ по химии цезия и рубидия, по изучению (с 1945) гетерополисоединений нептуния и плутония, по исследованию (с 1953) технеция и других компонентов радиоактивных отходов атомной промышленности. Исходя из представлений о водородной связи, предложил (1957) [c.475]

    В химической промышленности существуют многочисленные случаи, когда недопустимо присутствие даже самых незначительных количеств примесей, не обладающих поверхностной активностью. Например, предпринимались попытки удалить следы металлов из раствора пенным методом разделения. Однако, поскольку диссоциированные растворы, содержащие ионы металлов, не обладают поверхностной активностью, вспенивание таких растворов не позволяет концентрировать или обогащать их. Для осуществления такого разделения необходимо сначала сообщить ионам металлов поверхностную активность. Были выполнены обширные работы [641, большую часть которых проводили с целью удаления ионов некоторых металлов (стронция и цезия) из радиоактивных отходов. Для придания поверхностной активности ионам металлов эти ионы связывали в виде комплексов, хелатных или других соединений ионов с поверхностно-активными материалами. Растворы с различной концентрацией стронция вспенивали, применяя арескап-100 (промышленное анионное поверхностно-активное вещество) в качестве комплексообразующего и вспенивающего агента. Связанные в виде комплексов ионы металла выделялись из водной фазы и концентрировались в пене. Кроме того, было обнаружено, что с уменьшением концентрации стронция в растворе коэффициент концентрирования сравнительно быстро возрастал. [c.110]

    Радиоактивные отходы также могут быть подвергнуты микробной трансформации. Если такие изотопы, как Н, Со, 5 г и i34Qg нуждаются только в косвенном проявлении микробной активности (кобальт и стронций осаждаются в виде сульфидов и основных карбонатов, а цезий удаляется за счет ионного обмена в твердых отходах), то ликвидация соединений мышьяка [293] требует прямого участия микроорганизмов в процессах восстановления и метилирования до ди- и триметиларсина. [c.159]

    Одним из методов захоронения радиоактивных отходов в отвержденном состоянии является сорбция изотопов на монтморил-лонитовой глине с последующим обжигом глины. Монтморилло-нитовая глина — хороший материал для ионообменных процессов. Ее емкость очень высокая — в среднем 1,12 мг-экв на 1 г глины. По отношению к отдельным изотопам емкость этой глины составляет для Sr + 1,15, для s+ 1,10, для Y + 1,07, для редких земель 1,12 мг-экв1г. Типичная выходная кривая для цезия представлена на рис. 175. [c.269]

    Наиболее полно изучена сорбция на клиноптплолите радиоактивных изотопов цезия и стронция [57, 77—79]. При этом предполагается последующее захоронение радиоактивных отходов [80]. Данные по хроматографическому разделению цезия, рубидия и калия показали, что разделение этих весьма близких по свойствам катионов может быть успешно осуществлено на клиноптилолите при помощи растворов солей аммония [81]. Ионный обмен на высококремнистых цеолитах может быть использован для концентрирования цезия и рубидия из технологических растворов и природных высокоминерализовапных вод, а также для получения чистых солей этих металлов. Использование высокоселективного морденита дает также хорошие результаты по концентрированию и разделению щелочных металлов [82]. [c.59]

    Цементирование гидроокисных осадков, содержащих радиоактивные элементы, изучали Ю. М. Бутт и др. [286]. Они показали возможность закрепления в составе цементного камня осадков, состоящих из гидратов окиси железа, алюминия и марганца, сульфатокремнеземистой массы, золы от сжигания тряпья, бумаги, дерева. Расход цемента зависит от состава отходов и лежит в пределах 20—50% общего веса цементных блоков. В цементном камне лучше закреплялись ниобий и рутений, хуже стронций и цезий. [c.231]


Смотреть страницы где упоминается термин Цезий в радиоактивных отходах: [c.132]    [c.320]    [c.321]    [c.331]    [c.132]   
Химия в атомной технологии (1967) -- [ c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий радиоактивный

Цезий цезий



© 2025 chem21.info Реклама на сайте