Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиоактивные изотопы, использование в химии

    Определение при помощи радиоактивного изотопа калия К . Описанный выше радиометрический метод определения калия пригоден для анализа сравнительно больших количеств исследуемого вещества Если анализу подлежит очень малая навеска или маленький объем разбавленного раствора, то здесь оказываются пригодными способы, основанные на использовании искусственного радиоактивного изотопа К . Описан радиометрический метод определения калия в виде хлороплатината с применением К в качестве индикатора [1532] Метод изотопного разбавления — осаждение калия в виде перхлората в присутствии того же индикатора [2667] —применен для анализа почвы [686]. На некоторые другие работы о применении К в аналитической химии мы только сошлемся (541, 1612] [c.112]


    Однако все элементы периодической системы с 2>83 (т. е. после висмута) радиоактивны, не имеют стабильных изотопов. Большое практическое значение имеют и многие искусственно получаемые радиоактивные изотопы. Поэтому в наши дни важнейшей характеристикой химического элемента являются не только химические свойства, определяемые строением электронной оболочки атома, но и свойства атомного ядра, прежде всего его стабильность. Современная химия решает задачи, связанные с выделением и очисткой отдельных изотопов, как стабильных, так и радиоактивных, их практическим использованием, например при работе АЭС. От строения и устойчивости атомного ядра изотопов того или иного химического элемента зависит его распространенность, влияющая на распределение элемента в земной коре и на земном шаре, сочетание элементов друг с другом в минералах и месторождениях. [c.208]

    Кроме использования в качестве меченых атомов, радиоактивные изотопы в настоящее время все шире применяются и как источник излучений в технике для просвечивания металлических изделий (гамма-дефектоскопия), в контрольно-измерительной аппаратуре, в химии — для возбуждения некоторых реакций без повышения температуры, в частности процессов полимеризации, для борьбы со статическим электричеством в промышленности (радиоактивные ионизаторы), в медицине — для лечения злокачественных опухолей, для стерилизации различных препаратов и пр. [c.543]

    Использование радиоактивных изотопов в различных областях химии стало настолько широким, что нет никакой возможности даже перечислить их все. Радиоактивные, меченые атомы нашли большое применение как в промышленности, так и в научных исследованиях начиная от определения механизма химических реакций и кончая наблюдением за земляными червями во время действия на них различных раздражителей. [c.421]

    Замечательным примером применения радиоактивных индикаторов в аналитической химии является радиоактивационный анализ. Он основан на образовании в анализируемом материале радиоактивных изотопов или продуктов их превращений определяемых элементов под действием ядерных частиц. Его целесообразно использовать для определения малых примесей, когда обычные аналитические методы непригодны из-за ограниченной чувствительности. В табл. 19.10 приведена чувствительность активационного анализа при использовании для облучения анализируемого вещества медленных нейтронов ядерного реактора. [c.594]


    Теперь ядерная химия превратилась в обширную и важную отрасль науки. Удалось получить лабораторными методами примерно 1000 радиоактивных нуклидов (изотопов), тогда как природных открыто только 272 устойчивых нуклида и 55 неустойчивых (радиоактивных). Использование радиоактивных изотопов в качестве меченых атомов стало ценным методом научных исследований, в частности в медицине. Управляемое высвобождение ядерной энергии дало новый важный источник энергии. [c.607]

    Другое важное применение связано с введением метки С. Установление механизмов реакций в органической химии или биохимии, которое ранее основывалось исключительно на использовании радиоактивного изотопа С, можно теперь выполнить с помощью спектроскопии ЯМР С. Как и прежде, проведение синтеза меченого соединения неизбежно, но удается избавиться от часто трудной и не всегда однозначной деградации выделенных продуктов реакции для определения положения метки, поскольку, используя резонанс С, легко определить положение изучаемого атома углерода. В большинстве [c.389]

    В последние годы интерес к аналитической химии кобальта сильно возрос. Это обусловлено разнообразными новыми применениями кобальта и его соединений. Общеизвестно использование кобальта в качестве легирующего компонента специальных сплавов с высокой твердостью и термостойкостью. Многие соединения кобальта обладают высокой каталитической активностью и служат катализаторами синтеза различных химических соединений. Радиоактивные изотопы кобальта широко применяются в медицине. Ряд сложных органических соединений кобальта влияет на обмен вешеств у растений и животных и т. п. Все ъто привело к необходимости разработать новые методы качественного обнаружения и количественного определения кобальта как основного компонента и примеси в технических и биологических материалах весьма разнообразного состава. Особое внимание в работах последних лет обращено на развитие методов определения следов кобальта. Для этого в настоящее время используются главным образом спектрофотометрические, кинетические и электрохимические методы анализа. Много исследований посвящено также синтезу новых органических реагентов для определения кобальта и изучению оптимальных условий их применения. [c.5]

    Некоторые из применяемых в настоящее время методов определения концентрации стабильных изотопов могут быть осуществлены с использованием аппаратуры и приборов, имеющихся во многих химических лабораториях, а методики проведения изотопных анализов, как правило, по сложности мало отличаются от обычных приемов, используемых в аналитической химии. Относительное содержание изотопов данного элемента в смеси мол ет быть определено по отношению масс этих изотопов, в связи с чем наиболее общим методом изотопного анализа следует считать масс-спектроскопический метод. Способ превращения анализируемого вещества в образец для анализа зависит от его природы и от особенности изотопа. Часто методы превращения, используемые при работе с радиоактивными изотопами, могут быть использованы такл е в случае стабильных изотопов, и наоборот. [c.23]

    Настоящая книга посвящена в основном новым приложениям физических методов к координационной химии. Речь идет о тех методах, предвозвестниками которых были проводившиеся Вернером в конце XIX в. определения электропроводностей растворов комплексных солей и начатое Н. Бьеррумом изучение равновесий комплексов в водных растворах, которые, однако, не применялись исследователями в области координационной химии достаточно широко до 40-х годов. Естественно поэтому, что книга начинается главой об исследованиях термодинамики комплексо-образования в растворах, являющейся прямым продолжением ранних работ Н. Бьеррума, проводимых в значительной части его сыном Я. Бьеррумом за этой главой следует глава о кинетике комилексообразования. Оба эти раздела за последние годы очень сильно расширились в результате применения новых физико-химических методик, и особенно использования радиоактивных изотопов. [c.9]

    Радиоактивные изотопы и излучения находят применение в химической промышленности не только как средство воздействия на ту или иную реакцию, но и для контроля и автоматизации промышленных процессов. Уже применяются приборы, действие которых основано на использовании изотопов или излучения для контроля толщины, плотности, концентрации, расхода, уровня, давления и других параметров технологических процессов в химической промышленности. Основными видами установок излучений в радиационной химии являются у- и рентгеновские установки, линейные ускорители и электростатические генераторы Ван-Граафа. [c.272]


    Книга посвящена рассмотрению мер безопасности работы в химических лабораториях с вредными, ядовитыми, огнеопасными и взрывоопасными веществами. Предполагается, что читателю известны основы неорганической, аналитической, органической и физической химии. Книга иллюстрирована рядом практических примеров из работы химических лабораторий. Большое место отводится мерам безопасности применения в химических лабораториях современных методов исследования (радиоактивные изотопы и источники излучений, высокое давление, высокий вакуум, работа с жидкими газами и газами, находящимися в баллонах, использование электронных приборов и т. д.). Хотя книга является пособием для студентов химических факультетов, в ней много полезного найдут работающие в заводских химических и сельских агрохимических лабораториях. [c.2]

    В заключение необходимо отметить, что методы получения производных для газохроматографического анализа разработаны достаточно подробно и широко используются на практике. Однако эти методы рассчитаны, как правило, на использование в последующем газохроматографическом определении только двух типов детекторов пламенно-ионизационного (ПИД) и электронно-захватного (ЭЗД). Более широкие возможности для селективного определения отдельных классов органических соединений открываются при использовании и предварительных реакций, связанных с введением в молекулу анализируемых соединений атомов серы, фосфора, азота и других элементов, для определения которых разработаны и успешно используются в хроматографической практике селективные детекторы пламенно-фотометри-ческий, термоионный, электрохимические (кулонометрический, полярографический и др.). В данном случае мы можем и должны говорить о развитии аналитической химии меченых нерадиоактивных атомов. Отметим, что в ряде случаев может быть полезным использование для тех же целей и методов введения в молекулы анализируемых соединений групп, содержащих радиоактивные изотопы, например и [154]. Особенно перспективно, по нашему мнению, использование комбинированных реагентов и детекторов для решения задачи идентификации компонентов сложных смесей, что является наиболее важной стороной использования метода предварительных реакций. Вторым перспективным направлением является применение предварительных реакций с целью концентрирования примесей. [c.49]

    Основными элементами, входящими в состав органической молекулы, являются углерод, водород и кислород. Многие органические соединения содержат также азот, серу, фосфор. Известные радиоактивные изотопы кислорода и азота обладают слишком малыми периодами полураспада и потому применение их в исследованиях методом радиоактивных индикаторов ограничено. Также и единственный радиоактивный изотоп водорода тритий из-за особых технических трудностей работы с ним не нашел пока достаточно широкого применения. Естественно, что значительная часть работ в области органической химии была выполнена с применением стабильных изотопов дейтерия ( Н), тяжелого кислорода ( 0) и тяжелого азота Тем не менее использование радиоактив- [c.232]

    Ядерная медицина, базирующаяся на использовании радиоактивных изотопов в форме радиофармацевтических препаратов (РФП), источников излучения закрытого типа, а также на внешнем облучении, позволяет проводить многие исследования, диагностические и терапевтические процедуры лучше, проще и быстрее, чем любые другие традиционные методы. В некоторых случаях методам ядерной медицины вообще нет альтернативы. Эффективность этих методов основана на достижениях таких фундаментальных наук, как ядерная физика, химия, биология, а также результатах развития техники ускорителей и новых диагностических систем (сцинтиляционные камеры, однолучевые и позитрон-эмиссионные томографы, низкоэнергетические детекторы типа многопроволочных камер и т.д.). В настоящее время для научно-исследовательских, диагностических и терапевтических целей применяют около 200 различных радиоактивных изотопов, период полураспада которых составляет от нескольких минут до нескольких лет. Эти изотопы имеют преимущественно искусственное происхождение за счёт образования в реакциях взаимодействия заряженных частиц или нейтронов с веществом мишени. Радиоактивные изотопы получают в ядерных реакторах (реакторные изотопы), на ускорителях (циклотронные изотопы) и с помощью генераторов короткоживущих изотопов (генераторные изотопы). Некоторые изотопы, в основном изотопы долгоживущих и трансурановых элементов, могут быть получены при переработке отработавшего ядерного топлива. [c.548]

    Химия протекающих при этом экстракционных процессов остается, естественно, той же, что и при использовании экстракции в иных целях, однако некоторая специфика должна быть принята во внимание. Радиоактивное излучение обладает способностью вызывать побочные химические реакции — радиолиз воды, органического растворителя и т. д., что в свою очередь может изменить форму существования элемента в растворе, в частности валентное состояние. Экстракция радиоактивных элементов нередко требует также иного технического оформления процесса, предусматривающего защиту от излучения и тем более исключение прямого контакта с растворами. В ряде случаев следует учитывать также заметную адсорбцию радиоактивных изотопов без носителей на стенках используемой аппаратуры. [c.321]

    При некоторых типах ядерных реакций (например, при облучении ядер элементов частицами высоких энергий и процессах деления тяжелых ядер) могут образоваться очень сложные смеси радиоактивны изотопов ряда элементов. Далее требуется их разделение и выделение в чистом виде как для изучения происходящих при этом процессов, так и для изучения свойств самих радиоактивных изотопов или использования их в качестве радиоактивных индикаторов. Приемы аналитической химии, используемые с учетом специфических условий (обычно приходится иметь дело с микроколичествами образующихся радиоактивных элементов), позволяют в ряде случаев проводить такие разделения с применением изотопных носителей или без них. Однако некоторые группы очень близких по свойствам элементов (редкоземельных, трансурановых и др.) обычными химическими методами разделяются весьма трудно. За последнее время эти задачи были успешно решены с помощью ионообменной хроматографии. Кроме того, оказалось, что часто ионообменными методами можно быстрее, проще и чище выделять и другие элементы, для которых обычно используются химические методы выделения. Поэтому в настоящее время разрабатываются хроматографические методы выделения многих элементов периодической системы. Преимущество этих методов состоит также в том, что в них отсутствуют явления соосаждений, захватов и т. д., причем чистые препараты можно получать в одном цикле. [c.384]

    Синтезированы и применяются содержащие серу аминокислоты, например СНз—3 5—СНа—СНг—СН (ЫНг)—СООН (метионин). Но особенно часто и широко в органической химии и биохимии применяются разнообразные вещества с радиоактивным изотопом углерода С. Исходным веществом для синтеза в этих случаях часто является СОг (из Ва СОз). Очень многие синтезы проводят с использованием реакции Гриньяра получение кислот, сложных эфиров, кетонов, алкоголей и др. Таким образом, приобретают большое значение такие синтезы, которые, казалось бы, никогда не было смысла применять в практике. Так, например, описан путь получения толуола по схеме  [c.399]

    Снижение стоимости очистки сточных вод может быть достигнуто только при одновременном решении двух проблем. Первая из них, которой должны заниматься и которой занимаются специалисты по радиационной химии, это — интенсификация радиационной очистки, т. е. изыскание условий, при которых радиационные процессы будут протекать с большими выходами. Вторая проблема — снижение стоимости источников излучения. Представляется необходимым изыскание путей производства дешевых радиоактивных изотопов °Со и Сз. Относительно Сз в гл. VI уже упоминалось, что, по мнению американских ученых, его производство могло бы быть существенно усовершенствовано, во много раз увеличено и, очевидно, удешевлено, если он будет использоваться в большом масштабе. В настоящее время это производство значительно ниже возможностей ядерной промышленности. Что касается Со, то, по мнению некоторых ученых, при эксплуатации энергетических реакторов имеется возможность использовать часть нейтронов для активации кобальта без существенного снижения мощности реактора. Для этой цели, вероятно, можно было бы использовать нейтроны утечки и нейтроны из запаса реактивности. Тогда стоимость Со существенно снизится. Но этот вопрос, конечно, не может быть здесь обсужден сколько-нибудь подробно, он требует специального рассмотрения. Требуется также разработка и проверка в производственных условиях ускорителей, дающих мощный поток электронов с достаточной высокой энергией, стабильных и надежных в работе. И, далее, необходимы исследования возможностей, предоставляемых для радиационной очистки реакторными петлями и СПД. Весьма перспективным представляется использование реакторов атомных электростанций — не только для получе- [c.137]

    Метод радиоактивных индикаторов прочно вошел в практику химических исследований. Поэтому во многих университетах и институтах введены лекционные курсы и практические занятия по методу радиоактивных индикаторов в химии, цель которых заключается в подготовке химиков широкого профиля (не являющихся специалистами— радиохимиками) к сознательному и грамотному использованию радиоактивных изотопов при решении различных химических задач. [c.11]

    Знание закономерностей, определяющих поведение индикаторных количеств веществ, позволяет свести к минимуму возможность неконтролируемых потерь радиоактивного индикатора или предотвратить его загрязнение посторонними примесями. Кроме того, обнаруженные закономерности могут широко использоваться в целом ряде областей прикладной химии при получении сверхчистых веществ, полупроводников, ферритов и т. п. Наконец, использование особенностей поведения веществ в ультрамалых концентрациях лежит в основе важнейших методов концентрирования и разделения радиоактивных изотопов. [c.142]

    Использование радиоактивных изотопов в аналитической химии позволило создать принципиально новые методы качественного и количественного анализа, проверить и существенно улучшить многие классические методы, сократить время выполнения анализа. [c.201]

    Широко применяют также вещества, меченные стабильными изотопами— дейтерием Н, тяжелым кислородом Ю и тяжелым азотом однако далее речь будет идти только об использовании в органической химии радиоактивных изотопов. [c.296]

    В книге освещается широкий круг вопросов, связанных с применением радиоактивных изотопов в химий теоретические основы изотопных методов исследования, получение и выделение изотопов различных элементов, методы получения меченых роединений. Основное внимание уделяется использованию радиоактивных изотопов в наиболее важных областях химии — аналитической, неорганической, физической, органической. [c.2]

    Книга может служить полезным руководством для лиц, занимающихС Я исследованиями с использованием радиоактивных изотопов в химии и смежных с ней областях. Кроме того, она может быть рекомендована как учебное пособие для студентов химических вузов. [c.2]

    С другой стороны, тесные контакты коллоидной химии со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с такими классическими методами эксперимента, родившимися именно в коллоидной химии, как определение поверхностного натяжения и двухмерного давления, ультрамикроскопия, центрифугирование, диализ и ультрафильтрацня, наблюдение разнообразных электрокинетичеоких явлений в дисперсных системах, дисперсионный анализ и порометрия, многочисленные прецизионные адсорбционные методы, изучение рассеяния света (опалесценции) и т. п., в разных разделах коллоидной химии нашли эффективное применение всевозможные спектральные методы ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия (с широким использованием лазерной техники), малоугловое рассеяние рентгеновских лучей и другие рентгеновские методы, радиоактивные изотопы, все виды электронной микроскопии. Большие перспективы открывает привлечение современных физических методов исследования поверхностей с использованием медленных электронов, масс-спектроскопии вторичных ионов и т. п. [c.9]

    Еще более сильное действие на молекулы оказывают ядерные излучения (у-излучение, протоны, нейтроны и др.) и рентгеновское излучение. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности химию меченых атомов . Радиационная химия развивается в связи с развитием ядернсй физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень мощные потоки частиц, которыми все больше начинают пользоваться для осуществления химических реакций. Эти излучения рвут связи, выбивают отдельные атомы, порождают радикалы и ионы, а затем идут перегруппировки связей и возникают новые. Например, вместо двухстадийного обычного химического получения фенола из бензола можно получать это важнейшее вещество из бензола и воды в одностадийном процессе с использованием ядерных излучений. При этом из воды получаются радикалы ОН и Н и бензол далее реагирует по схеме [c.57]

    Следует отметить, что в подавл 5ющем большинстве случаев при использовании радиоактивных веществ в химии и химической промышленности применяются препараты такой активности, излучение которых не может не только превысить,, но даже сколь-нибудь приблизиться к предельно допустимой норме. Однако применение радиоактивных изотопов при химических исследованиях часто-сопряжено с другой опасностью. Поскольку эти вещества применяются в так называемом открытом виде, т. е. химику приходится манипулировать с жидкими, сыпучим или даже газообразными радиоактивными препаратами, возникает опасность при неосторожной работе попадани радиоактивных веществ внутрь организма. В этом случае вредное действие радиоактивных изотопов резко повышается, поскольку многие из изотопов обладают способностью концентрироваться в определенных органах челове-ческого тела и выводятся из организма очень медленно. [c.127]

    В 50—60-е годы развитие фундаментальных исследований в химии комплексонов и комплексонатов способствовало дальнейшему расширению области применения обсуждаемых хелантов. В основном это относится к использованию комплексонов в качестве умягчителей воды и средств удаления накипи и солеот-ложений в энергетическом оборудовании, применению комплексонатов микроэлементов в сельском хозяйстве Появление и совершенствование ядерной техники стимулировало разработку методик использования комплексонов для выведения из организма человека радиоактивных изотопов [c.10]

    Известную проблему, особенно в биоаналитической химии, составляет определение выхода, т. е. определение процентного количества соединения после его выделения из, скажем, биологической матрицы. Выход часто определяется с помошью метода внутреннего стандарта, основное требование к которому состоит в том, чтобы он по своим свойствам был максимально близок к определяемому соединению. Очень часто эту проблему решить довольно трудно, что, естественно, влияет на достоверность результатов. Почти идеальными внутренними стандартами являются изотопно-меченные аналоги соединения, использование которых привело к исключительно важной роли масс-спектрометрического обнаружения в количественном газохроматографическом анализе. В этом случае для введения метки применяются стабильные изотопы (чаще всего дейтерированные аналоги), и вследствие высокой разрешающей способности такой системы обнаружения отношение меченого внутреннего стандарта и немеченого анализируемого образца можно определить точно. Химическое различие, обусловленное изотопным замещением, обычно пренебрежимо мало и не влияет на результаты выделения и обработки пробы. Хотя в капиллярной ГХ может наблюдаться небольшое различие во временах удерживания изомеров, меченных Н и н, влияние изотопного замещения на удерживание обычно не проявляется ввиду очень незначительного различия в способности к образованию водородных связей с неподвижной фазой. Как и при применении стандартов, меченных радиоактивными изотопами, определение меченого и немеченого соединений основывается целиком на специфическом методе одновременного обнаружения обеих форм. [c.174]

    Среди различных проблем мирного использования атомнрй энергии важное место занимают работы по изысканию путей и методов приме1чения радиоактивных изотопов и ядерных излучений в различных процессах переработки нефтяных углеводородов. В послевоенные годы в связи с появлением мощных источников ионизирующего излучения начала бурно развиваться новая отрасль науки — радиационная химия как одно из направлений общей проблемы использования атомной энергии в мирных целях. [c.269]

    Основные научные работы относятся к аналитической и физической химии. Разработал колориметрический метод определения водородного показателя с использованием кислотно-основных индикаторов, Указал на важность контроля этого показателя в промышленности, бактериологии и аналитической химии. Изучал процессы образования и кристаллизации осадков с помощью радиоактивных изотопов. Одним из первых в США выполнил фундаментальные исспе-дования в области полярографического анализа. Изучал кинетику и механизм эмульсионной полимеризации, разработал низкотемпературный способ производства синтетического каучука. После 1955 сконцентрировал свое рнимание на изучении кислотно-основного равновесия и разработке методов титрования в неводных средах Автор переведенных на многие языки книг, в частности таких, как Кон-дуктометрическое титрование (1923. русский перевод 1935), Потенциометрическое титрование (1927), Объемный анализ (т. 1 — 2, 1929, русский перевод 1930, 1932), Учебник количественного неорганического анализа (1936), [c.249]

    Ценные результаты в области радиационной химии водных растворов получены при использовании радиоактивиых и стабильных изотопов. Выше уже отмечалось (см. стр. 100), что введение радиоактивного изотопа церия в виде иона Се + в раствор сернокислого окисного церия позволило экспериментально доказать участие радикалов ОН в обратном окислении Се +, возникающего при радиолитическом ваастанавлении Се +. Позже в результате применения радиоактивного Сг + была установлена аналогичная роль радикалов ОН в радиолитических превращениях ионов Сг + [156]. [c.119]

    Недавние исследования Мелвина Кэлвина (род. в 1911 г.) с использованием радиоактивных изотопов представили процесс фотосинтеза в новом освещении оказалось, что для него имеет значение также реакция фосфо-рилирования Так же как альдольная конденсация формальдегида была привлечена для объяснения процесса фотосинтеза в растениях, эта реалия послужила для решения путем синтезов in vitro некоторых про блем, относящихся к химии простых сахаров. [c.370]

    Однако многие элементы (Т1, V, А1, Мд и др.) не имеют доступных радиоизотопов, пригодных в качестве индикаторов. Для определения состава экстрагирующихся внутрикомплексных соединений, образуемых такими элементами, можно использовать неизо-топные индикаторы, т. е. радиоактивные изотопы других элементов. Области применения неизотопных индикаторов в аналитической химии рассмотрены Коренманом и Шеяновой [429, 430]. В наиболее простом варианте использование этих индикаторов аналогично их применению в экстракционном радиометрическом титровании (стр. 208). [c.144]

    Адсорбционные явления находят чрезвычайно широкое применение в препаративной химии искусственных радиоактивных элементов. Методы, основанные на использовании вторичной обменной адсорбции, позволяют выделять без носителя большое число радиоактивных изотопов, получаемых с помощью различных реакций. Так, например, отделение изотопа хрома, получаемого по реакции У Цй,2п) Сг от вещества мишени и радиоактивных загрязнений (изотопы титана и скандия) осуществляется с помощью адсорбции на гидроокиси железа. Аналогичным образом осуществляется выделение радиоактивного изотопа марганца, получаемого по реакции Сг52( , 2п)Мп [20]. [c.127]

    Радиоактивные индикаторы могут быть использованы для решения различных задач, связанных с изучением электрохимических процессов. Во многих случаях, когда речь идет об определении малых количеств веществ, выделяющихся при электролизе, о контроле перемещения ионов в электрическом поле и т. д., применение радиоактивных индикаторов дает возможность упростить решение поставленной задачи и ускорить получение нужной информации. Принципы использования радиоактивных индикаторов в электрохимических процессах имеют много общего с нринципами использования меченых атомов в других областях физической химии. Поэтому ограничимся рассмотрением только одного примера нсполь-зовання радиоактивных индикаторов в электрохимии, а именно, применением радиоактивных изотопов для определения чисел переноса. [c.288]

    Одна из важнейших особенностей органических соединений состоит в том, что в состав их молекул обычно входит несколько атомов одного и того же элемента, которые могут по-разному вести себя в различных химических процессах. Использование радиоактивных изотопов позволяет проследить за поведением отдельных атомов органических веществ при химических реакциях, если для исследования взяты вещества, в молекулах которых радиоактивные атомы занимают строго определенное положение. Например, за поведением карбоксильного углерода, входящего в состав молекулы пропионовой кислоты, можно проследить, используя пропио-новую кислоту, содержащую радиоактивные атомы только в карбоксильной группе С2Н5 СООН. Другая группа задач, решаемых в органической химии с помощью радиоактивных индикаторов (определение количеств органических веществ, скоростей расходования или накопления какого-либо продукта и т. д.), не нуждается в использовании соединений, содержащих радиоактивную метку в строго определенном положении. В этом случае возможно применение веществ, состоящих из равномерно меченых молекул или молекул, радиоактивную метку в которых несет любой атом данного элемента. [c.295]

    И, наконец, говоря о применении рутения, нельзя не упомянуть об использовании его радиоактивных изотопов в научных исследованиях, особенно при решении спорных вопросов химии самого рутения. Здесь элемент № 44 в конечном счете борется сам с собой и для себя. Ведь путь к окончательному решению проблемы очистки ядерного горючего от радиорутения и разработка способов его эффективного извлечения из руд проходит через углубленное познание свойств и особенностей этого сложного и необычного элемента. [c.253]

    Использование адсорбции на угле в препаративной химии радиоактивных изотопов. [c.470]


Смотреть страницы где упоминается термин Радиоактивные изотопы, использование в химии: [c.3]    [c.34]    [c.595]   
Теоретическая неорганическая химия (1969) -- [ c.421 , c.423 ]

Теоретическая неорганическая химия (1971) -- [ c.402 , c.404 ]

Теоретическая неорганическая химия (1969) -- [ c.421 , c.423 ]

Теоретическая неорганическая химия (1971) -- [ c.402 , c.404 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопы радиоактивные

Радиоактивность в химии

Радиоактивность использование

Химия изотопов



© 2025 chem21.info Реклама на сайте