Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая система элементов изменение свойств

    Каковы общие закономерности изменения физических и химических свойств простых веществ, образуемых элементами главных подгрупп периодической системы элементов а) в периоде б) в группе  [c.218]

    Изменение окислительно-восстановительных свойств элементов в зависимости от строения их атомов. Способность химических элементов присоединять или Отдавать электроны связана со строением атомов и положением их в периодической системе элементов Д. И. Менделеева  [c.143]


    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]

    Исключительно важно освоить прогнозирующую роль периодического закона и периодической системы элементов Д. И. Менделеева. Тогда, даже не прибегая к учебнику, удастся многое рассказать о свойствах элементов и нх соединений. Так, по положению элемента в периодической системе можно описать строение атома — заряд и состав ядра, электронную конфигурацию атома. А по последней определить степени окисления элемента, возможность образования молекулы в обычных условиях, тип кристаллической решетки простого вещества в твердом состоянии. Наконец, можно определить формулы высших оксидов и гидроксидов элементов, изменение их кислотно-основных свойств по горизонтали и вертикали периодической системы, а также формулы различных бинарных соединений с оценкой характера химических связей. Это значительно облегчит изучение свойств элементов, простых веществ и их соединений. Начинать следует с рассмотрения общей характеристики каждой подгруппы. [c.101]


    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Открытый закон периодичности Д. И. Менделеев использовал для создания периодической системы элементов. Днем рождения системы Д. И. Менделеева обычно считают 18 февраля 1869 г., когда был составлен первый вариант таблицы. В этой таблице 63 известных Д. И. Менделееву элемента были расположены в порядке возрастания атомных масс. Это расположение отражало также периодичность изменения свойств элементов. В таблице были оставлены пустые места для четырех еще не открытых элементов с атомными массами 45, 68, 70 и 180. Существование их было предсказано Д. И. Менделеевым. [c.20]

    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]

    Академик А. Е. Ферсман открыл в периодической системе закономерное изменение свойств ио диагональному направлению. Например, сходство свойств проявляют расположенные по диагонали бериллий и алюминий или бор и кремний. Объясняется это близостью радиусов атомов у сходных элементов. Так, при переходе от бериллия к бору радиус атома уменьшается, но при переходе от бора к алюминию он увеличивается. Таким образом, радиусы атомов бериллия и алюминия оказываются близкими, что и обусловливает сходство свойств. Близки радиусы атомов у бора и кремния (рис. 26). [c.78]


    При этом приобретала немаловажное значение и форма периодической системы, отражающая изменения свойств как самих элементов, так и их соединений. Надо сказать, что Д. И. Менделеев не отдавал предпочтения тому или иному варианту системы. Почти во всех изданиях Основ химии горизонтальный и вертикальный, короткий и полудлинный варианты таблицы помещались им на равных основаниях, хотя и отличались длиной периодов. Для решения вопроса о длине всех периодов в системе необходимо было сопоставить разности между атомными весами начальных и конечных элементов различных периодов  [c.47]

    Закон, на котором основана периодическая система элементов (Д.И. Менделеев, 1869 г.) периодическое изменение строения атомной оболочки элементов определяет периодичность изменения свойств элементов. [c.41]

    Поскольку окислительно-восстановительные свойства простых веществ очень важны для характеристики последних, интересно проследить изменение этих свойств в зависимости от положения в периодической системе элементов. [c.54]

    Структура периодической системы элементов. В соответствии с периодическим изменением свойств элементов система Д. И. Менделеева состоит из семи периодов. Периоды 1, 2, 3, 4, 5, 6 содержат соответственно 2, 8, 8, 18, 18, 32 элемента. Седьмой период не завершен. Периоды 1, 2 и 3 называют малыми, остальные — большими. Вследствие различия периодов по длине и дру-1ИМ признакам может быть много способов их относительного [c.36]

    Во втором издании (1-е изд. вышло в 1979 г.) в описание ряда методик внесены изменения и уточнения приложение дополнено новыми таблицами. На форзацы помещены коротко- и длиннопериодный варианты периодической системы элементов Д. И. Менделеева. Описаны лабораторные работы но изучению химических свойств элементов всех групп периодической системы. Работы основаны на современных представлениях о строении вещества и химической термодинамики. В каждой главе приведены контрольные вопросы и задачи. [c.2]

    Как изменяются химические свойства оксидов и гидроксидов железа, кобальта и никеля в степени окисления ( + 11) Подтвер >кдает ли найденная Вами тенденция изменения свойств в ряду Ре—Со—N1 необходимость перестановки положений N1" и Со в Периодической системе элементов (атомная масса никеля меньше, чем у кобальта), проведенной Д. И. Менделеевым  [c.143]

    Таким образом, только современное учение об атомах и молекулах позволяет представить во всей полноте сущность периодического закона. Не затрагивая основных положений этого учения, рассмотрим такие характеристики атомов и молекул, которые раскрывают закономерности изменения важнейших химических свойств в периодической системе элементов. [c.19]

    Химические свойства элементов проявляются при взаимодействии их атомов. Периодическая система элементов отражает закономерное изменение этих свойств. [c.27]

    Многие закономерности химических свойств элементов могут быть объяснены на основе рассмотрения их ионного потенциала 2+/г (2 — заряд катиона г — его радиус). На рис. 2.2 приведена ориентировочная схема изменения свойств ионов в зависимости от их положения в периодической системе элементов. Стрелками показано направление увеличения положительных зарядов ионов радиусов г и величин 7+/г. В периодах слева направо увеличиваются прочность химических соединений (малорастворимых и комплексных) и окислительные свойства ионов. [c.33]

    Материал гл. 1 позволит систематизировать Ваши представления о химических элементах и существующей между ними взаимосвязи. Вы поймете, что периодичность изменения свойств элементов и их соединений является отражением периодичности в изменении электронной структуры атомов. Периодические системы элементов, рассматриваемые в гл. I, помогут Вам уверенней ориентироваться в бесконечно многообразном мире химических веществ и их превращений. [c.7]

    Систематическое, целенаправленное и осознанное изучение огромного фактического материала современной неорганической химии невозможно без руководящего принципа, роль которого играют периодический закон и периодическая система элементов как его графическое выражение. Без преувеличения можно сказать, что уровень квалификации химика определяется тем, насколько он способен творчески и свободно использовать те общие закономерности в изменении природы химической связи, химического и кристаллохимического строения, свойств веществ, которые диктуются явлением периодичности. Физическая сущность этого явления заключается в особенностях электронного строения атомов. [c.5]

    Однако все, что связано со строением ядер, изучают в курсе ядерной физики. Химические же свойства определены строением и периодическим изменением свойств электронных оболочек атомов. Эта периодичность была обобщена Д. И. Менделеевым в 1869 г. в открытом и сформулированном им периодическом законе, а периодическая система элементов явилась количественным воплощением этого закона. Периодичность изменения свойств атомов химических элементов, как известно, обязана своим происхождением послойному строению электронных оболочек и строго ограниченной емкости каждого электронного слоя. Так, первый электронный слой в атоме не может содержать более 2 электронов, второй—более 8, третий — более 18, четвертый—более 32 и т. д. Последовательному заполнению каждого из этих слоев соответствуют семейства элементов, свойства которых изменяются монотонно. Каждый раз при переходе к новому электронному слою структура во многом повторяет строение предыдущего, представляя качественно прежнюю, но количественно иную монотонность изменения свойств элементов. Что касается периодичности изменения свойств различных классов химических соединений, то здесь вся химия, во всем ее многообразии являет собой торжество и всеобщность периодического закона. [c.13]

    Идея о сложности атомов химических элементов привела к другому очень важному для нас предвидению — возможности превращения элементов. Ведь признание единства и сложности атомов различных по своим свойствам элементов неизбежно влечет за собой признание единства их происхождения и возможности превращения. В статье Естественная система элементов и применение ее к указанию свойств некоторых элементов в ноябре 1870 г. Д. И. Менделеев писал, что все (в природе) сводится на элементы, все учение химии состоит в учении о свойствах элементов — цель и задача — превратить один в другой . Следовательно, только после открытия периодического закона об изменении свойств химических элементов идея превращаемости элементов, о претворении которой люди мечтали много веков, впервые получила теоретическую основу. [c.14]

    Периодическая система элементов — графическое выражение периодического закона естественная классификация химических элементов, основанная на закономерных изменениях свойств элементов от величины зарядов ядер их атомов. Принцип построения периодической системы состоит в расположении химических элементов в порядке возрастания зарядов ядер, что приводит к формированию периодов и групп. [c.224]

    В двух предыдущих параграфах были рассмотрены приближенные методы вычисления волновых функций и энергетических состояний атомов периодической системы элементов Менделеева. Основным результатом этих методов расчета было доказательство того, что в атомах можно приближенно говорить о движении отдельных электронов, на которые действует поле ядра и самосогласованное поле остальных электронов. Этот результат позволяет исследовать качественные закономерности строения атомов на основе простых и элементарных рассуждений. В частности, удается объяснить природу периодичности изменения свойств, обнаруживаемую в ряду элементов, расположенных в порядке увеличения атомного номера. [c.358]

    ОБЩАЯ СХЕМА (ОРИЕНТИРОВОЧНАЯ) ИЗМЕНЕНИЙ СВОЙСТВ ИОНОВ В СВЯЗИ С ИХ ПОЛОЖЕНИЕМ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА [c.9]

    Эти изменения каталитической активности при внесении добавок дали Митташу основание предложить своего рода классификацию зависимости активности катализатора от его состава [90]. Ввиду того что эта классификация исходила из огромного числа наблюдений (при которых, следуя периодической системе элементов, смешивали каждый элемент А с любым элементом В как таковым, или в виде соединения в различных соотношениях [90, стр. 146]), она представляла большой интерес. Ничего не разъясняя по существу, она тем не менее указывала на множество направлений, по которым может изменять свои свойства катализатор в результате внесения в его состав пр имесей. И если случай в, когда активность смешанного катализатора равнялась сумме активностей составляющих его компонентов, был понятен, то все остальные случаи (а их было большинство) оставались совершенно непонятными. Теория активных центров Тэйлора в 30-х годах внесла некоторую ясность в явление отравления (случай б). Но это еще более обострило внимание к явлению промотирования (случай а), в такой же степени важному, интересному и загадочному. Случаи гид можно было считать частными проявлениями. промотирования. [c.220]

    Подобно атомным объемам периодический характер имеет и изменение атомных радиусов (см. табл. 5 гл. I), а также в значительной мере и тип кристаллической решетки элемента в твердом состоянии. Б гл. XIII показано, что все щелочные металлы обладают объемпоцентрированной кубической решеткой, а элементы подгруппы 1В образуют гранецентрированные кубы. Элементы нулевой группы, возможно, за исключением гелия, обладают гранецентрированными решетками, а элементы четвертой группы, за исключением свинца, дают кристаллы со структурой алмаза. Точность определения атомных констант позволяет особенно убедительно подтвердить химическое расположение элементов в периодической системе. Закономерное изменение свойств наблюдается даже в таких деталях, как дублетное расщепление в атом-ных спектрах, что видно, например, из следующих данных  [c.193]

    Предложено много катализаторов гидрокрекинга. Активными компонентами их являются некоторые соединения металлов VI и УП1 групп периодической системы элементов Д. И. Менделеева. Довольно часто выбор останавливают на катализаторах, содержащих сульфиды никеля и вольфрама или иикеля и молибдена, нанесенных на крекирующие пористые носители (окись алюминия, алюмо силикаты) и активированных галогеном (фтором, хлором). Соотношение компонентов — гидрирующего, расщепляющего кольца и гидроизомеризующего — в катализаторе должно быть таким, чтобы достигался, требуемый результат. Нежелательна избыточная крекирующая активность катализатора во избежание усиленного образования газов и легких жидких продуктов. Подбору катализаторов, пригодных для изменения структуры углеводородов в нужном направлении, уделяется большое внимание. Активность и селективность (по приросту индекса вязкости) зависят не только от состава катализатора, но и от способа его приготовления. Ниже указаны выход и свойства масел, полученных глубокой гидроочисткой (гидрокрекингом) деасфальтизата (плот- [c.280]

    Периодическая система Менделеева является естественной си-стематикой атомов химических элементов. Химический элемент — совокупность атомов с одинаковым зарядом ядра и электронной оболочкой. Закономерности изменения свойств химических элементов определяются Периодическим законом. Учение о строении атома вскрыло физический смысл Периодического закона. Оказалось, что периодичность изменения свойств элементов и их соединений зависит от периодически повторяющейся сходной структуры электронной оболочки их атомов. Химические и некоторые физические свойства зависят от структуры электронной оболочки, особенно ее наружных слоев. Поэтому Периодическая система является научной основой изучения важнейших свойств элементов и их соединений кислотно-основных, окислительно-восстановительных, каталитических, комилексообразовательных, полупроводниковых, металлохимических, кристаллохимических, радиохимических и т. п. Помимо теории строения атома Периодическая система элементов сыграла колоссальную роль в учении о естественной и искусственной радиоактивности, освобождении внутриядерной энергии. В настоящее [c.10]

    Периодическая система элементов позволяет ориентировочно определить природу химической связи в соединениях, образованных двумя элементами, для чего необходимо знать закономерности изменения свойств в периодах и группах с ростом порядкового номера. Если в качестве примера остановиться на взаимодействии цезия и фосфора с хлором, то можно сразу сказать, что оно приведет к образованию соединений s l и P I3. В первом из них связь ионная, так как цезий находится в начале шестого периода, а хлор — в конце третьего периода и их свойства поэтому резко противоположны. При взаимодействии этих элементов общая электронная пара переходит в полное владение хлора, возникают два иона противоположного знака, которые электростатически притягиваются друг к Другу. Фосфор же с хлором находятся в одном периоде, но хлор расположен правее фосфора и поэтому у него сильнее выражено стремление присоединять электроны. В соединении P I3 общие электронные нары смещены к атомам хлора, химическая связь ковалентная полярная. К таким же выводам можно прийти, учитывая значения относительных электроотрицательностей реагирующих атомов (см, табл. 7). В конечном итоге современная теория химической связи (см. гл. П1) связана периодическим законом. [c.56]

    Графическим следствием закона Д. И. Менделеева является периодическая система элементов. Рассмотрим кратко структуру наиболее распространенной короткой формы периодической системы. По горизонтали в таблице расположены семь периодов. Первый, второй и третий периоды состоят из одного ряда элементов и называются малыми. Остальные периоды — большие. Седьмой период пока является незаЕ1ершенным. Элементы второго и третьего периодов названы Д. И. Менделеевым типическими в них наиболее наглядно можно проследить за изменением свойств элементов и их соединений. [c.30]

    Периодическая система элементов позволяет ориентировочно определить и природу химической связи в соединениях, образованных двумя элементами, для чего необходимо знать закономерности изменения свойств в периодах и группах с ростом порядкового номера. Если в качестве примеров остановиться на взаимодействии цезия и фосфора с хлором, то можно сразу сказать, что оно приведет к образованию соединений s l и РС . В первом из них связь будет ионная, так как цезий находится в начале VI периода, а хлор — в конце III и их свойства поэтому резко противоположны. [c.191]

    Чередование фаз Лавеса с различным типом кристаллической структуры в системах 2г — Ме (Ме — переходной металл V— VIII групп периодической системы элементов) также можно рассматривать как влияние изменения электронной концентрации в зависимости от эффективной валентности компонента В (Ме ) при неизменном компоненте А (2г). Чередование Х,2->Я1 Я2 в пределах периода в таком случае должно являться результатом увеличения эффективной валентности переходных металлов с ростом порядкового номера в соответствии с ростом суммы 8 + d электронов, а диагональное смещение кристаллохимических свойств фаз Лавеса следует отнести за счет уменьшения эффективной валентности с увеличением главного квантового числа в группах. [c.169]

    При рассмотрении электрохимической коррозии выделяют влияние на скорость растворения внутренних, ирисущих металлу, факторов и внешних факторов, относящихся к коррозионной среде. К внутренним относятся факторы, связанные с природой металла, его составом, структурой, состоянием поверхности, напряжениями и др. Важнейшей характеристикой природы металла являются его термодинамическая устойчивость и способность к кинетическому торможению анодного растворения (пассивация). Имеется определенная связь между положением металла в Периодической системе элементов Д. И. Менделеева и их коррозионной стойкостью. Для металлических сплавов на основе твердых растворов характерно скачкообразное изменение коррозионных свойств при концентрациях, равных гг/8 атомной доли более благородного компонента (правило Таммана), в связи с образованием плоскостей упорядоченной структуры, обогащенных атомами благородного компонента. Правило Таммана было подтверждено на ряде твердых растворов, а также иа технических пассивирующихся сплавах  [c.23]

    В середине XIX века было предпринято несколько попыток создать систему химических элементов. Однако только великому русскому химику Д. И. Менделееву удалось выполнить эту задачу. За основу сзоей системы он принял наиболее характерное для того времени свойство химических элементов — их атомный вес. Расположив все известные в 1869 г. химические элементы (табл. 1) в порядке возрастания их атомных весов, он обнаружил периодическое изменение всех основных свойств элементов. Менделеев писал Если все элементы расположить в порядке по величине их атомного веса, то получится периодическое повторение свойств. Это выражается законом периодичности сво11-ства простых тел, также формы и свойства соединений элементов находятся в периодической зависимости.. . от величины атомных весов элементов . Самым существенным оказался тот факт, что каждый элемент занимал определенное место в системе. Поэтому Менделееву пришлось исправлять атомные веса некоторых элементов — урана, иттрия, церия и других. Например, атомный вес урана был ранее принят равным около 100, что находилось в явном противоречии с его местом в периодической системе элементов. Последующие тщательные определения доказали правоту взглядов Менделеева. [c.9]

    При обсуждении вопроса об образовании более тяжелых элементов из элементарных частпц мы в дальнейшем увидим, что с возрастанием атомного веса периодически изменяются только те свойства, которые определяются способом расположения внешних электронов, наиример химические свойства. Свойства, зависящие только от полного числа электронов, например рентгеновские спектры, но показывают таких изменений. Более точное и подробное описание периодичности химических свойств является предметом неорганической химии. Здесь следует отметить только наиболее важные факты. Из девяти грунн периодической системы элементов семь подразделяются на подгруппы А и Л (табл. 1). Благодаря этому достигается наиболее удобная форма периодической классификации. Полезность такого подразделения групп можно лучше всего показать на примерах. Во второй группе разница свойств [c.187]

    Е. К. Золотарев [220] установил линейную зависимость между энергией гидратации изозарядных катионов и эквивалентным потенциалом ионаф, равным корню квадратному из отношения суммарного потенциала катионов к радиусу катиона. Таким образом, эту зависимость можно считать примером сопоставления простого свойства с комплексным (для трехвалентных катионов Ла = — 79,8 = 327). В другой работе [221], также посвященной гидратации ионов, найдено, что линейная зависимость существует между энергией гидратации и суммарным ионизационным потенциалом, отнесенным к радиусу. Автор этого исследования считает, что на основании установленного им соотношения можно объяснить изменение электродных потенциалов металлов в зависимости от их положения в периодической системе элементов. [c.92]

    Следует указать на некоторые общие правила изменения кислотности и основности простых окислов и их гидратов. С увеличением заряда переходного металла кислотность соответствующего окисла растет, основность — падает, например, НМПО4 — кислота, МпаО — кислотный окисел, Мп(ОН)з — основание, а МпО —основной окисел. В периодической системе элементов с увеличением атомного номера металла в одной и той же группе его основные свойства растут. С передвижением слева направо в одном и том же периоде растут кислотные свойства. Кислотные окислы имеют преимущественно ковалентную, основные — ионную связь. Поэтому для определения кислотности и основности окислов целесообразно решить вопрос об эффективном заряде на атоме кислорода. В работе [119] [c.71]


Смотреть страницы где упоминается термин Периодическая система элементов изменение свойств: [c.180]    [c.208]    [c.19]    [c.126]    [c.8]   
Аккумулятор знаний по химии (1977) -- [ c.45 ]

Аккумулятор знаний по химии (1985) -- [ c.45 , c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение свойств

Изменение свойств элементов в больших периодах периодической системы

Изменение свойств элементов в малых периодах периодической системы

Общая схема (ориентировочная) изменений свойств ионов в связи с их положением в периодической системе элементов Д. И. Менделеева

Периодическая система

Периодическая система элементо

Периодическая система элементов

Периодические изменения свойств

Периодическое изменение свойств элементов

Системы свойства

Элемент периодическая

Элементы свойства



© 2025 chem21.info Реклама на сайте