Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура асфальтенов

Рис. 1.6. Поперечный разрез модели структуры асфальтенов Рис. 1.6. Поперечный разрез <a href="/info/231417">модели структуры</a> асфальтенов

    Влияние давления. Давление в термодеструктивных процессах следует рассматривать как параметр, оказывающий значит( льное влияние на скорость газофазных реакций, на фракционный и г]руппо-вой углеводородный состав как газовой, так и жидкой фаз реакционной смеси, тем самым и дисперсионной среда. Последнее обстоятельство обусловливает, в свою очередь, соответствующее изменение скоростей образования и расходования, а также молекулярную структуру асфальтенов, карбенов и карбоидов. [c.64]

    Для получения наиболее устойчивых систем, в которых большая часть серы находится в связанном состоянии, необходимо проводить процесс длительное время. На связывание серы также оказывают влияние условия контакта и количество добавляемой серы. Перевод серы в связанное состояние необходим потому, что несвязанная сера при дальнейшем нафевании выше 180°С в процессе подготовки и укладки дорожного покрытия будет дегидрировать углеводороды вяжущего с образованием сероводорода. Предположительно, именно внедренная в структуру асфальтенов сера является эффективным модификатором пластических свойств получаемых материалов [4] и наиболее термоустойчива. [c.77]

    С. Р. Сергиенко считает приведенные выше элементы структуры асфальтенов вполне верными, однако полагает целесообразным дополнить их аналогами, содержащими бициклические ароматические кольца  [c.34]

    Таким образом, кристаллоподобная структура асфальтенов напоминает кристаллическую решетку гра- [c.212]

    Таким образом, можно отметить, что коксы, полученные из высокосернистого сырья, характеризуются неоднородностью структуры, обусловленной пространственной структурой асфальтенов при высоком содержании в них минеральных примесей, вызывающих как повышенную поверхностную активность при смешивании со связующим, так и высокую реакционную способность по отношению к активным газам. Окисляемость и поверхностные свойства малосернистых и высокосернистых коксов существенно различаются. [c.45]

    Для определения атомов металлов в структуре асфальтенов применяется большое число разнообразных методик, заметно различающихся по точности и воспроизводимости получаемых результатов. Вполне закономерно, что результаты, получаемые при использовании разных методик, часто сильно различаются и не могут быть сопоставимыми. Устранить эту трудность можно только в том случае, если принять единую методику, наиболее хорошо разработанную и дающую воспроизводимые результаты. Методика эта должна быть стандартной и в аппаратурном оформлении. Экспериментальные данные, получаемые по такой методике, должны служить критерием в оценке достоверности результатов, получаемых другими методами. [c.106]

    Образование новых молекул в результате сочетания двух или большего числа молекул углеводородов и образование ароматических структур в результате дегидрирования способствуют появлению в битуме более жестких структур — асфальтенов. Эти новые полициклические ароматические компоненты изменяют первоначальную коллоидную структуру битума. Смолы и в меньшей степени масла превращаются при окислении сернистым ангидридом в асфальтены. Величина отношения асфальтены/смолы возрастает, и асфальтены коагулируют — битум переходит из золя в гель. Сера за счет еще невыясненного механизма во время реакции внедряется в углеводородные структуры, что важно для повышения твердости. После завершения реакции кислород сернистого ангидрида в окисленном продукте не обнаруживается он удаляется в виде реакционной воды. Это, пожалуй, самое убедительное свидетельство того, что термин окисление здесь неуместен, а скорее — дегидроконденсация насыщенной и полу-насыщенной (нафтено-ароматической) частей сырья. [c.137]


    Ретроспективная оценка роли физических методов в определении структуры асфальтенов показывает, что каждый из них рано или поздно апробировался на столь сложном физическом объекте п сыграл при этом определенную роль. Однако необходимо отметить, что, несмотря на увеличение информативной способности современных физических методов анализа, нельзя назвать из их числа такой метод, который бы позволил составить достаточно полное представление о структуре асфальтенов. В то же время комплексное их использование нозволяет отражать различные стороны такой многогранной научно-практической проблемы, как раскрытие химического строения молекул асфальтенов и многообразия их физико-химических свойств. [c.205]

    Трудность применения метода люминесценции для целей детальной характеристики структуры асфальтенов заключается в большой диффузности полос флуоресценции при комнатной температуре. По всей вероятности, эта трудность усиливается также наличием в таких сложных веществах, как асфальтены, нескольких соединений с взаимно перекрывающимися спектрами. [c.215]

    Из данных, полученных методом ЭПР, следует, что с возрастанием молекулярного веса асфальтенов повышается содержание свободных радикалов и вместе с этим резко возрастает процентное отношение числа углеродных атомов, входящих в ароматические структуры, к общему числу С-атомов в молекуле. Это согласуется с положением, утверждающим, что конденсированные полициклические ароматические структуры асфальтенов являются центрами образования ассоциатов молекул асфальтенов. Экспериментальные данные согласуются с теорией, что в нефтяных асфальтенах свободные электроны или радикалы связаны с нелокализованными системами я-электронов, стабилизированных резонансом. [c.225]

    Влияние давления. Давление в термодеструктивных процессах следует рассматривать как параметр, оказывающий значительное влияние на скорость газофазных реакций, на фракционный и групповой углеводородный состав как газовой, так и жидкой фаз реакционной смеси, тем самым и дисперсионной среды. Последнее обстоятельство обусловливает, в свою очередь, соответствующее изменение скоростей образования и расходования, а также моле — кулярной структуры асфальтенов, карбенов и карбоидов. Анализ большого количества экспериментальных данных свидетельствует, что II процессе термолиза нефтяных остатков с повышением давле — ния  [c.43]

    Структуры асфальтенов, в которых могут возникать свободно-радикальные состояния [c.226]

    Если учесть, что содержание металлов в остатках больишнства нефтей в виде порфириновых комплексов обычно не превышает 25% от общего содержания металлов в остатке, то можно считать, что вклад в общую глубину удаления металлов счет порфиринового металла невелик. Обычно в условиях каталитического гидрооблагораживання наблюдается высокая степень деметаллизащш - до 90%, и более. Следовательно, наибольшему удалению подвержены непорфириновые формы металлсодержащих комплексов, включенные в поликонденсированные структуры асфальтенов и высокомолекулярных смол. Объяснение механизма и высокой скорости реакций деметаллизации, очевидно, следует искать в реакциях электронного обмена металлов с активными центрами катализатора. Не исключена вероятность активного действия в этом механизме устойчивых свободных радакалов, связанных с металлами, в частности с ванадием. [c.57]

    Анализ литературных данных по применению физических методов к определению структурных элементов в асфальтенах позволяет полученную информацию условно разделить на два качественных уровня. Первый характеризует надмолекулярную структуру асфальтенов как комплексную физико-химическую систему. Это проявляется в признаках кристаллического строения и в закономерностях процесса растворения. [c.238]

    В отличие от левой ветви диаграммы в ее правой части фор- мирование надмолекулярных структур асфальтенов, карбенов, карбоидов происходит вследствие химических взаимодействий и сопровождается резким возрастанием структурно-механической прочности вплоть до образования в результате реакций уплотнения кристаллизационных структур типа отвержденных пен-коксов, [39]. [c.39]

    Необходимость разработки многочисленных, столь не сходных между собой моделей макромолекул вызвана не только и не столько расхождениями взглядов различных исследователей на структуру асфальтенов, сколько невозможностью описать единой моделью особенности ВМС различного происхождения. Так, если слоистая модель удовлетворительно согласуется с результатами анализа упоминавшихся выше нефтей [395, 1030—10351, то крайне сомнительно соответствие ее реальной макроструктуре асфальтенов из таджикской нефти (Кичик-Бель) [396], очень слабо метаморфизован-ной,смолистой, сернистой,высокоцикличной. Кичикбель-ские асфальтены, не выделяясь по средней молекулярной массе, обладают очень большими размерами изолированных частиц (см. табл. 7.2) и в рентгеновских спектрах не дают сколько-нибудь четко выраженных пиков отражения, характерных для упорядоченных структур (см. рис. 7.1, кривая 2). Этп ас-фальтепы совершенно не проявляют способности к набуханию при растворении, хотя именно такое поведение типично для слоистых макрочастиц. Макромолекулы этих ВМС вероятно, должны иметь монослойное строение. [c.188]

    Для определения структуры асфальтенов используются рентгенография (электронография), электронная микроскопия. [c.153]


    Асфальтены, в отличие от смол, не растворимы в алканах, имеют высокую степень ароматичности, которая в совокупности с высокой молекулярной массой гетероциклических соединений приводит к значительному межмолекуляриому взаимодействию, способствующему образованию надмолекулярных структур. Наличие надмолекулярной структуры асфальтенов является одной из важнейших особенностей этих компонентов и, в целом, определяет сложности их аналитического исследования. Если смолы можно легко разделить на узкие фракции то для разделения асфальтенов нужны специальные растворители, обладающие различной полярностью, а также специальные приемы, включающие гидрирование, термодеструкцию, озонолиз, а также набор современных методов (ИК- и УФ-спектроскопия, ЯМР-, ЭПР- и масс-спектрометрия, люминисцентный и рентгеноструктурный анализы) [19, 22, 23]. Например, экспериментами по гидрированию смол с М 600-800 и асфальтенов с М 1700 в мягких условиях [23] было показано, что из них могут быть получены углеводороды, по составу и свойствам приближающиеся к соответствующим углеводородам, вьвделенным из высокомолекулярной части нефти. Основное их отличие в более высокой цикличности, повышенном содержании серы и меньшем содержании атомов углерода с алифатическими связями. Это свидетельствует о наличии прямой генетической связи между высокомолекулярными углеводородами, гетероатомными соединениями, смолами, асфальтенами. [c.19]

    Изучение природы межмолекулярных сил, способствующих ассоциированию асфальтенов, является предметом многочисленных исследований. Обобщая имеющиеся сведения, можно объяснить стабилизацию надмолекупя1 юй структуры асфальтенов, учитьшая все виды взаимодействия, вносящие определенный вклад в суммарную энергию а) дисперсионное, которое выражается в виде обмена электронами между однотипными неполярными фрагментами и действует на очень близких расстояниях (0,3—0,4 нм) б) ориентационное, которое проявляется в виде переноса зарядов между фрагментами, содержащими диполи или гетероатомы, также относится к близкодействующим силам в) тг-взаимодействие ареновых фрагментов, формирующих блочную структуру г) радикальное взаимодействие между неспаренными электронами парамагнитных молекул д) взаимодействие за счет водородных связей между гетероатомами и водородом соседних атомов составляющих молекул е) взаимодействие функциональных групп, связанных водородными связями. [c.25]

    В последние годы возросло число публикаций, посвященных применению метода ГПХ для анализа нефтепродуктов и, главным образом, для определения ММР нефтяных смол, асфальтенов и других высокомолекулярных компонентов. Весьма це1шым является вариант метода с препаративным вьщелением разделяемых компонентов. Вьщеление узких фракций позволяет более тщательно оценить молекулярную массу их и позволяет построить калибровочные кривые на реальном нефтяном остатке, выбранном в качестве стандартного. На основе данных ГПХ может быть получена обширная информация не только по ММР и распределению по размерам молекул и частиц, но и по предположительной структуре асфальтенов, смол. Так, по данным разделения концентратов смол двух типичных сернистой и высокосернистой нефтей (рис. 1.11) можно сделать вывод о их различиях. В частности, для смол, выделенных из остатка товарной смеси западносибирской нефти, характерно бимодальное распределение, т. е. с относительно резким переходом от фракций с низкой молекулярной массой к фракции высокомолекулярных смол. Для смол аргганского гудрона характерно более [c.37]

    Применительно к процессам каталитического гидрооблагораживання остатков знание общих закономерностей превращения отдельных гетероатомных соединений может быть полезно только в части того, что, например, сера из любого серусодержащего соединения удаляется в виде сероводорода, азот из азотсодержащих соединений удаляется в виде аммиака, кислород из кислородсодержащих компонентов в виде воды и пр. Скорость тех или иных реакций превращения гетероатомных соединений может быть оценена лишь косвенно на основе изучения элементного состава сырья и продуктов, а также замером количества вьщелив-шегося сероводорода, аммиака, воды, высадившихся металлов на поверхность катализатора. Интенсивность реакций гидрирования может быть оценена также косвенно по изменению содержания водорода и углерода в жидких продуктах реакции. В связи с этим, для выявления эффективности процессов каталитического гидрооблагораживання нефтяных остатков может быть применен принцип оценки брутто-реакций . Однако, ввиду многообразия остатков, выделенных из различных типов нефтей, характеризующихся различным содержанием компонентов с надмолекулярной структурой (асфальтенов, смол), знание только данных по элементному составу недостаточны. Механизм превращения нефтяных остатков тесно связан со структурными изменениями сырья при нагреве и контакте с каталитической поверхностью. [c.47]

    Кроме указанного приема повьииения концентрации аренов полезно использоьание деструктивного разложения ассоциатов и надмолекулярных структур асфальтенов и смол до подачи на катализатор, т. е. на стадии предварительного нагрева. Предложено [46] подвергать остатки предварительному висбрекингу или гидровисбрекингу, т. е. легкой термодесгрукции в атмосфере водорода. Там же показано, что при незначительной глубине крекинга (3% по выходу фракции бензина, перегоня19шегося до 204 °С) константа скорости в реакциях удаления серы возрастает с 1,1 до 1,5, а при глубине крекинга до 12% константа скорости снижается до 1,0, что, видимо, связано с увеличением доли трудноудаляемой серы при более глубоком крекинге. [c.55]

    По-видимому, большая часть микроэлементов, в особенности это касается переходных металлов, в асфальтенах координационно связана по донорно-акцепторному типу. При этом в роли доноров электронов могут выступать гетероатомы, включенные в полициклоароматические системы асфальтенов, и в некоторой степени углеродные радикальные центры, образованные дефектами этих систем [913]. Атомы металла в таких случаях могут размещаться как внутри молекулярных асфальтеновых слоев, так и в межслоевом пространстве [12, 914]. Внутрислоевые комплексы более прочны и устойчивы к действию деметаллирующих агентов. Особо прочные комплексы образуются в том случае, когда донорные центры располагаются в плоском молекулярном асфаль-теновом слое внутри окна с размерами, близкими к ковалентному диаметру связываемого металла (аналогично структуре II) [263, 893]. На основании изучения распределения микроэлементе при гёль-хроматографии асфальтенов делается однозначный вывод о том, что Ге, Со, Нд, 2н, Сг и Сн внедрены в пустоты слоистой структуры асфальтенов, ограниченные атомами 3, N или О [761- [c.169]

    Вторичное окисление или осернение нефтей в гипергенных условпях приводит к повышению концентрации ВМС в нефтях за счет осмолеппя части низкомолекулярпых компонентов, но не должно существенно изменять надмолекулярную структуру асфальтенов. [c.200]

    Химические структуры асфальтенов чрезвычайно разнообразны от соединений с преобладанием алифатических элементов в молекулах до высококонденсированных ароматических систем - и от чистых углеводородов до гетероциклических соединений с различными полярными группами. Поэтому асфальтены рассматривают как класс веществ, объединенных не по химической природе, а по растворимости. Учитывая, что свойства нефтевмещающих пород и компонентный состав нефти изменяются и в пределах одной залежи, а также принимая во внимание физикохимическое воздействие пластовых вод, контактирующих с нефтью, и биохимические процессы, можно предполагать, что и физико-химические свойства асфальтенов различны. [c.9]

    На основапии рентгеноструктурно -о анализа было установлено, что выделенные из нефти (гудронов, битумов) асфальтены имеют слабовыраженные кристаллические сзойства. Более детальные исследования показали, что структура асфальтенов характеризуется ярко выраженными двумерными поли циклическими системами, образующими плоскости— слои ( грс)здья>>, пластины , а в угле-химии— ламели ). Диаметр этих с/ оев по первоначальным данным составлял 0,85—1,50 нм, а по эолее поздним — 3,0—5,0 нм. Слои, по-видимому, имеют вытянутую форму с длиной примерно 5,0 и шириной около 1,0—1,2 нм (рис . 10.1). [c.212]

    Ванадил-порфириновый комплекс должен соединять листы-блоки конденсированных ароматических структур с атомом ванадия в азотной дырке . По этому предноложительному структурно-молекулярному представлению, ванадил- и никель-порфирины не только являются составной частью молекул асфальтенов, но и выполняют связующую роль в процессе образования трехмерной структуры асфальтенов из двухмерных строительных блоков. Т. Иен, Е. Ти-нан и Г. Воган [21] дают такое схематическое изображение соединения ванадил-иорфиринового комплекса с конденсированными ароматическими блоками асфальтенов (рис. 14), длина которых составляет 9—15 А. [c.103]

    Для решения структурно-молекулярной проблемы асфальтенов перспективным представляется метод моделирования. Из определенных материалов подбирается искусственная система, моделирующая структуру асфальтенов, и на ней детально изучаются качественные и количественные зависимости физических пара1 етров от структурно-химических соотношений в молекуле. Метод моделирования интересен и перспективен лишь в том случае, если искусственная модель будет создаваться при полном учете [c.106]

    Существенный прогресс в формировании представлений о макроструктуре асфальтенов, а также методах разделения их по молекулярным весам позволил приступить к исследованию влияния на свойства битумов не вообще асфальтенов, а отдельных их фракций, резко отличающихся по своим физическим свойствам [30]. Были исследованы три битума босканский асфальтенового основания (Венесуэла), Мидуэй спешиал нафтенового основания (Калифорния) и Сафания парафинового основания (аравийский). Деасфальтизацией этих битумов м-пентаном были выделены асфальтены, которые резко различались по составу и характеру. Образцы фракционировались методом препаративной хроматографии на геле, готовились растворы асфальтенов и их фракций в различных растворителях. Затем определялась зависимость вязкости растворов от концентрации, молекулярного веса и структуры асфальтенов, растворяющей способности растворителя с целью вы- [c.197]

    Что касается изучения структуры асфальтенов на основе электронных спектров поглощения, то большая часть снектроско-пистов единодушны во мнении, что спектры эти недостаточно характеристичны и потому не позволяют делать однозначные выводы о наличии конкретных структур ароматических ядер в молекулах. [c.212]

    Структурные параметры, приведенные в табл. 70, дают информацию об усредненной молекуле фракций асфальтенов. Например, сравнение значений Ср/С со значениями этого же показателя для стандартных ароматических конденсированных соединений показывает, что в среднем структура асфальтенов изменяется от дибензнафтацена, т. е. ароматических структур, состоящих из шести бензольных колец, в низкомолекулярных [c.218]

    Продолжением цикла этих работ явилось исследование механизма ассоциации ванадилхелатов на основе метода электронного парамагнитного резонанса [33]. Было обнаружено два различных типа спектров ванадиевых соединений в растворах нефтяных асфальтенов один тип — связанный со структурой асфальтенов, а другой — свободный . Связанный ванадий характеризуется [c.225]

    Из полученных данных следует, что асфальтепы состоят из конденсированных ароматических структур, степень конденсации которых не очень велика, хотя число различных полициклических систем может быть большим. Возможности масс-спектроскопиче-ского метода при исследовании асфальтенов могут быть полностью реализованы только после дальнейшего исследования модельных соединений с очень большим молекулярным весом и упрощения состава асфальтенового образца различными методами разделения. В последнее время пытаются использовать пиролиз для целей характеристики структуры асфальтенов. Так, например, в сообщении [36] приведены результаты анализа масс-спектров летучих продуктов (в интервале 35—400° С), полученных при пиролизе асфальтенов, выделенных из гудрона по процессу Добен . Был выбран ступенчато-изотермический режим с шагом от 20 до 50° при выдержке от 5 мин. до 2 час. Появление основных групп пиков, начавшееся с 75° С, характеризовало отщепление алкильных заместителей, от метана до гексана, а также бензола и циклогексана. [c.230]

    Структура асфальтенов, по выводам авторов [41], имеет слоистую ориентацию базисных плоскостей, на что указывает симметрия рефлексов только по диаметральному направлению. Отсутствие дифракционных колец от гексагональной сетки (свойства турбостратной структуры) при изменении стереометрического положения объекта указывает на слоистый характер структуры асфальтеновых частиц, причем отдельные плоскости не обладают развитой гексагональной сеткой. Электронно-дифракционные исследования выявили ряд межплоскостных расстояний й (002) в диапазоне от 2 до 5 А. Ориентировочные размеры кристаллитов в рамках протурбостратной структуры составляют более 50 А. [c.238]

    На основе данных ПМР-сиектроскопии и рентгеноструктурного анализа была предложена модель гипотетической иадмолекуляр-ной структуры асфальтенов, в которой базисные плоскости связаны между собой метиленовыми цеиочками (рис. 1). Такие структуры асфальтенов характерны для нефтяных систем, подвергнутых термоокислительной и термической конденсации (соответственно производство битумов и пеков). При осуществлении физических процессов (наиример, деасфальтизация нефтяных остатков) могут также образоваться надмолекулярные структуры, аиалог 1чные изображенным на рис. 1, но в таких структурах базисные плоскости связаны между собой силами Ван-дер-Ваальса (образуются ассоциаты). [c.30]

    Благодаря современным методам анализа установлены способы построения структурной единицы смолисто-асфальтеновых веществ различных нефтей [И, 119]. Согласно данным рентгеноструктурного анализа надмолекулярная структура асфальтенов состоит из 5—6 слоев полйядерных двухмерных пластин общей толщиной 1,6—2,0 нм. Размеры надмолекулярных структур, определенные рентгенографически, имеют заниженные значения по сравнению с таковыми, найденными электрономикроскопически, что, вероятно, связано с включением при определении размеров по электронным микрофотографиям алифатической части молекул, в то время как рентгеновские лучи рассеиваются только упорядоченной частью или ядром молекулы. [c.30]

    Впервые исследования рентгеноструктурных характеристик проведены Лабутом и Пфайфером [316], которые показали, что асфальтены сходны с аморфными веществами. Исследование структуры асфальтенов рентгеноструктурным анализом проводилось различными авторами, начиная с 50-х годов [317—319]. Советские исследования проводились на широко распространенных дифрактометрах ДРОН-1 или ДРОН-2 [318, 319] или УРС-60 ИМ, диапазон измерения в углах от 3 до 70° (точность 0,5 %). Для калибровки спектров по углам снимались рентгенограммы с эталонов. Сравнение с эталонами одного образца асфальтенов арланской нефти позволило установить, что асфальтены обладают слоисто-блочной надмолекулярной организацией, имеющей неорганизованную гексагональную структуру дальнего порядка, характерную для неграфитированного углерода. Однако строение фрагментов асфальтенов, составляющих отдельные слои, отличаются большим разнообразием и различной степенью ароматичности, поэтому для других образцов асфальтенов наблюдалась симметрия гексагональных сеток на отдельных слоях [320]. [c.154]


Смотреть страницы где упоминается термин Структура асфальтенов: [c.60]    [c.361]    [c.196]    [c.214]    [c.49]    [c.104]    [c.232]    [c.238]    [c.250]    [c.262]    [c.31]    [c.34]    [c.171]   
Нефтяные битумы (1973) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение структуры пор и проницаемости из-за выпадения парафина и асфальтенов

Надмолекулярная структура асфальтенов

Посадов И. А., Поконова Ю. В. Исследование химической структуры нефтяных асфальтенов ИК-спектральным методом



© 2025 chem21.info Реклама на сайте