Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торий в природе

    Довольно скоро было установлено, что радиоактивное излучение урана и тория имеет сложную природу. Под действием магнитного поля лучи отклонялись таким образом, что можно было различить три типа излучения. Резерфорд назвал эти три составляющие радиации первыми тремя буквами греческого алфавита альфа-лучи, бета-лучи и гамма-лучи. [c.153]


    В 1900 г. Крукс (см. гл. 12) обнаружил, что свежеприготовленные соединения чистого урана обладают только очень незначительной радиоактивностью и что с течением времени радиоактивность этих соединений усиливается. К 1902 г. Резерфорд и его сотрудник английский химик Фредерик Содди (1877—1956) 5 высказали предположение, что с испусканием альфа-частицы природа атома урана меняется и что образовавшийся новый атом дает более сильное излучение, чем сам уран (таким образом, здесь учитывалось наблюдение Крукса). Этот второй атом в свою очередь также расщепляется, образуя еще один атом. Действительно, атом урана порождает целую серию радиоактивных элементов — радиоактивный ряд, включающий радий и полоний (см. разд. Порядковый номер ) и заканчивающийся свинцом, который не является радиоактивным. Именно по этой причине радий, полоний и другие редкие радиоактивные элементы можно найти в урановых минералах. Второй радиоактивный ряд также начинается с урана, тогда как третий радиоактивный ряд начинается с тория. [c.164]

    Все актиноиды радиоактивны. Торий, протактиний и уран встречаются в природе, так как у них имеются изотопы с большим периодом полураспада. В ничтожных количествах находятся в природе нептуний и плутоний. Остальные актиноиды получены искусственным путем в течение последних 30 лет (см. 37). [c.644]

    В последние годы экстракция нашла широкое применение для разделения металлов и получения их в состоянии высокой чистоты. Во многих случаях она является единственным методом, который удается применить в промышленном масштабе, например, при очистке металлов, служащих топливом для атомных реакторов. Это относится как к металлам природного происхождения (уран, торий), так и к являющимся продуктами облучения (плутоний). С помощью экстракции разделяются также и другие металлы из семейства актинидов. С успехом решено разделение циркония и гафния, а также тантала и ниобия—металлов, встречающихся в природе всегда парами и, благодаря большому химическому подобию, трудных для разделения другими методами. Экстракцией можно выделить из отбросных продуктов промышленности (шлак, зола, шлам) содержащиеся в них следы различных металлов, имеющих важное техническое применение (германий, индий, церий и др.). [c.424]

    Торий, протактиний и уран встречаются в природе (Ра в очень малых количествах). Остальные актиноиды были получены искусственно с иомощью различных ядерных превращений . Наибольший вклад в синтез заурановых элементов внесен двумя большими группами исследователей, работающими в г. Беркли (Калифорния, США) под руководством Г. Сиборга и в г. Дубне (СССР) под руководством акад. Г. Н. Флерова. [c.607]


    Если представление о полностью заторможенной реакции на пределе торможения как остаточной цепной реакции может просто объяснить существование самого предела действия ингибиторов, то требуется еще объяснить с точки зрения этого представления независимость предела скорости для данного алкана от природы ингибитора, что является не столь уже простым. Осложняющим обстоятельством является то, что слишком различные ингибиторы, как N0 и олефины с различным механизмом действия, дают одинаковый предел скорости. Для того, чтобы решить, является ли это совпадение скорости N0 и некоторых олефинов не случайным, необходимо исследовать действие более широкой группы ингиби-,торов на термический распад определенного алкана, что и было предпринято в нашей лаборатории. Коснемся этого ниже. [c.42]

    Уран и, торий ТЬ и протактиний Ра содержатся в земной коре. Остальные актиноиды в природе не встречаются (за исключением нич- [c.556]

    Самый тяжелый галоген — астат — в природе практически не встречается. Его получают путем искусственно осуществляемых ядерных реакций. Наиболее долгоживущий изотоп астата имеет период полураспада всего 8,3 ч. Ничтожные количества астата обнаружены в продуктах естественного радиоактивного распада урана и тория. [c.478]

    Иногда открытие Д. И. Менделеева сравнивают с решением задачи установления правильной последовательности ранее перепутанных клавишей рояля. Однако следует учесть, что к моменту открытия периодического закона многих клавишей не доставало, так как были известны только 63 элемента из 92, существующих в природе. Кроме того, многие клавиши издавали фальшивые звуки. Менделееву пришлось сильно изменить принятые в то время атомные массы ряда элементов. Так, атомные массы урана и тория он полагал равными 232 и 240 вместо принятых значений 116 и 120. Атомную массу церия Менделеев рекомендовал считать равной 138 вместо 92. [c.453]

    Природные ресурсы. Торий, протактиний и уран встречаются а природе [c.573]

    Актиноиды. Все актиноиды радиоактивны. Торий, протактиний и уран встречаются в природе, так как у них есть изотопы с большим периодом полураспада. В ничтожных количествах имеются в земной коре нептуний и плутоний остальные актиноиды получены искусственным путем при помощи ядерных реакций в течение последних 30—40 лет. Массовые содержания тория в природе составляют примерно 10 , а урана — 3 10 %. Они относятся к числу рассеянных элементов, а протактиний — к числу редких. В настоящее время количества получаемых Ыр и Ри исчисляются в килограммах, Ат и Ст — в со- [c.323]

    Благодаря такому строению атомов, эти элементы являются активными металлами и во всех своих соединениях проявляют только одну степень окисления, равную +1- Элемент франций не имеет стабильных изотопов, встречается в природе только среди продуктов распада урана и тория и может быть получен искусственным путем с помощью ядерных реакций. Свойства этого элемента изучены мало. [c.224]

    Из всех актиноидов только торий и уран в природе встречаются в относительно больших количествах, представляющих практический интерес. Содержание тория и урана в земной коре соответственно равно 8-10" и 3-10" вес.%. Элементы 93—103 получают искусственным путем, но практический интерес представляют нептуний и плутоний. Торий добывают главным образом из монацитового песка, представляющего собой смесь фосфатов тория и лантаноидов. Получают металлический торий из его галидов восстановлением активными металлами при высокой температуре или разложением иодида тория на раскаленной вольфрамовой нити. Возможно получение тория методом электролиза. [c.72]

    Температура зажигания определяется—активностью катализа- тора, природой и концентрацией исходных реагентовГ В процессе старения катализатора температура зажигания возрастает. [c.59]

    Активность смешанного катализатора, как показано на кривых активность — состав медных катализаторов [см. рисунок], зависит от ирироды актиоатора и ого количества. Небольшие добавки активатора дают резкий скачок активности, форма же остальной части кривой (за точкой, соответствующей 5 % добавки) зависит от природы активатора. При применении окислов церия, алюминия, тория и хрома кривая падает сразу же за 5 %-ной точкой, в случао же окислов урана и марганца кривая идет параллельно оси абсцисс на отрезке от 5 до 80%, а затем резко падает для окислов цинка и железа кривая постепенно поднимается от первого максимума, соответствующего содержанию 5% активатора, до значительно более высокого пика, соответствующего содержанию 75 % активатора [32]. [c.267]

    Торий (ТН) встречается в природе в виде смеси трех изотопов ТН-232, ТН-230 и ТН-228, Распространенность первого из них значительно больше, чем у двух других. Уровень радиации тория достаточно низок его соединения могут использоваться без вреда для организма, если они только не попадут внутрь. Так, оксид тория (ТН02> широко использовался в газовых фонарях в Европе и Америке во время газовой эры для ускорения горения газа. Он являлся источником радиоактивности калильной сетки газового фонаря. [c.326]


    Значение химии в изучении процессов, протекающих в природе и, в частности, в живых организмах, очень велико. В результате длительных физико-химических процессов в космосе сформировались космические тела, а в недрах Земли образовались залежи угля, тор((5а, исфти, горючих газов, металлических руд, солей и др. С помощью химии эти залсжн используются человечеством как для пепосредствсииого потребления, так и в роли сырья для производства раз.чичиых продуктов. [c.6]

    Различные изотопы отличаются друг от друга устойчивостью. Так, изотопы водорода протий и дейтерий вполне устойчивы и из их смеси состоит природный водород (дейтерий 0,016%) тритий же неустойчив, самопроизвольно подвергается радиоактивному распаду, отчего в природном водороде его нет и он может быть получен лищь искусственно. 26 элементов имеют лишь по одному устойчивому изотопу — такие элементы называются моноизотопны-ми (они характеризуются преимущественно нечетными атомными номерами), и атомные массы их приблизительно целочисленны. У 55 элементов имеется по нескольку устойчивых изотопов — они называются полиизотопными (большое число изотопов характерно для элементов преимущественно с четными атомными номерами). У остальных элементов известны только неустойчивые, радиоактивные изотопы. Это все тяжелые элементы, начиная с элемента № 84 (полоний), а из относительно легких — № 43 (технеций) и № 61 (прометий). Однако радиоактивные изотопы некоторых элементов относительно устойчивы (характеризуются большим периодом полураспада ), и потому эти элементы, например торий, уран, встречаются в природе. В большинстве же радиоактивные изотопы получают искусственно, в том числе и многочисленные радиоактивные изотопы устойчивых элементов. [c.23]

    Скандий, иттрий н лантан имеют ио одному устойчивому изотопу 5с-45, -89 и La-I39. Для всех лантаноидов, кроме прометия, известны устойчивые и ютоны нромстнй не имеет ни одного устойчивого и 0Т0па. Актиний и актиноиды также не имеют устойчивых изотопов—дни все радиоактивны. Однако среди радиоактивных изотопов тория и урана встречаются относительно устойчивые, в свяан с чем эти элементы встречаются в природе в относительно больших количествах, представляющих практический интерес. [c.260]

    Таким образом, имеющиеся данные свидетельствуют о существенном влиянии природы отравляющего металла на степень отравления. Видимо, из-за различия в методах отложения металлов и испытания катализаторов единого мнения об относительной силе отравляющих металлов нет. Теоретического объяснения влияния типа металла также не имеется. В работе [202], правда, делается попытка представить в общем виде возможное поведение адсорбированных на поверхности алюмосиликатного катализатора различных катионов. В ней изучалось влияние на каталитическую активность натрия, калия, бария, цинка, магния, водорода, алюминия, тория. Исходный натрийалюмосиликат пропитывали водными растворами соответствующих солей. Общее количество рас- [c.155]

    От порозности слоя адсорбента зависит гидравлическое сопротивление, возникающее при движении потока разделяемого продукта. Пористость частиц или гранул адсорбента в значительной мере влияет на его активность чем больще пористость, тем больше удельная поверхность частиц или гранул адсорбента (в м /г), тем при прочих равных условиях больше адсорбционная актив- ость адсорбента, характеризуемая количеством поглощенного вещества. Удельная поверхность адсорбента зарисит от природы адсорбента и составляет для пористых адсорбентов (силикагелей, алюмогелей) — около 1000 мУг для непористых мелкокристаллических адсорбентов — от 1 до 500 м /г. Адсорбционная активность щеолитов зависит от диаметра тор и размера адсорбируемых молекул. Большое значение имеет и гранулометрический состав адсорбента, характеризуемый содержанием фракций, задерживаемых ситами определенных размеров, а также прочность адсорбента при статических или динамических нагрузках. [c.238]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    АКТИНОИДЫ — группа из 14 элементов 7-го периода системы элементов Д. И. Менделеева, следующих за актинием, с порядковыми номерами 90—103. А. характеризуются тем, что в их атомах прерывается заполнение шестого и седьмого электронных слоев и при переходе от каждого предыдущего А. к последующему увеличивается число электронов в пятом электронном слое. Все А. радиоактивны. Три из них — 233(J и 28эи используются КЭК ядерное горючее и как взрывчатое вещество в атомных бомбах. Торий, протактиний н уран встречаются в природе, [c.14]

    Поверхностное натяжение занисит от ряда фа1<торов важнейшие из них 1) температура, 2) природа жидкости и сопрнкаса1о-щихся с ней фаз. [c.142]

    Торий встречается в природе в виде минерала монацита СеР04 (фосфат РЗЭ, Са и ТЬ) отдельно от Zr и Hf. Поэтому проблема разделения больших количеств смесей ТЬ, Zr и Hf в промышленности не возникает. Однако очистка тория (IV) от сопутствующих ему РЗЭ методом экстракции решается очень эффективно. [c.108]


Смотреть страницы где упоминается термин Торий в природе: [c.260]    [c.60]    [c.146]    [c.147]    [c.57]    [c.233]    [c.647]    [c.648]    [c.649]    [c.12]    [c.23]    [c.35]    [c.167]    [c.242]    [c.81]    [c.9]    [c.285]    [c.208]    [c.220]    [c.388]    [c.25]    [c.25]    [c.29]    [c.90]    [c.221]   
Радиохимия (1972) -- [ c.320 , c.321 ]

Основы общей химии Том 2 (1967) -- [ c.247 , c.250 ]




ПОИСК







© 2025 chem21.info Реклама на сайте