Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия электропроводящие

    Для создания электрического контакта диэлектрическое оборудование покрывают электропроводящими покрытиями — металлическими пленками и токопроводящими эмалями. [c.59]

    Серебро обладает высокой электропроводностью, отражательной способностью и химической устойчивостью, особенно при работе в щелочных растворах и большинстве органических кислот. Поэтому покрытие серебром получило применение главным образом для улучшения электропроводящих свойств поверхности токонесущих деталей в электротехнической и радиоэлектронной отраслях промышленности, для сообщения поверхности высоких оптических свойств (свежеполированное серебро имеет коэффициент отражения света около 99%), для защиты химической аппаратуры и приборов от коррозионного разрушения под действием щелочей и орга нических кислот, а также для декоративной цели с последующим оксидированием. Серебром чаще всего покрывают изделия из меди и ее сплавов. Для защиты от коррозии черных металлов серебрение не применяется. [c.422]


    В -последнее время большое внимание уделяется разработке условий нанесения металлических покрытий химическим и электрохимическим способами на изделия из пластмасс, керамики, стекла, фарфора и других материалов для последующей их пайки, а также для создания электропроводящей и теплопроводящей поверхности. Главная трудность при покрытии таких изделий металлами заключается в подборе условий и технике выполнения подготовки поверхности, обеспечивающих достаточно хорошую проводимость и прочное сцепление ее с покрытием. [c.429]

    Металлические пигменты. Пигменты этой группы— порошки металлов, из которых наиболее широко применяются алюминиевая пудра и цинковая пыль. Ограниченное применение имеют бронзовые пудры и свинцовый порошок. Металлические пигменты по ряду свойств (электропроводность, теплостойкость, отражательная способность и др.) существенно отличаются от большинства неорганических пигментов, представляющих собой соли или оксиды. Это обусловливает и некоторые специфические области их применения. Так, при достаточном наполнении металлическими пигментами лакокрасочные покрытия приобретают электропроводящие свойства и применяются для защиты электросварных конструкций, в печатных электрических схемах, а при наполнении цинковой пылью — в качестве протекторных грунтовок [21]. [c.66]

    Интерес к ХМЭ возник после работ Миллера и Ван де Марка по применению электрода, покрытого электропроводящей полимерной пленкой. Вначале основное внимание исследователей было сконцентрировано на способах приготовления химически модифицированных электродов, их свойствах, механизмах переноса электронов. Были установлены многие важные закономерности, которыми следует руководствоваться при закреплении модификаторов на электродной поверхности, найдены и обоснованы области практического применения ХМЭ, в том числе и в вольтамперометрии. В последствии наряду с созданием новых электродов большое внимание уделялось изучению состояния химических соединений при иммобилизации на электродной поверхности, проявлению электро-478 [c.478]

    ЗОЛОЧЕНИЕ — нанесение на поверхность металлических и неметаллических изделий слоя золота. Золочением создают декоративные, антикоррозионные, герметизирующие, защитные, оптические, электропроводящие, антифрикционные и многоцелевые нокрытия. Золото отличается высокой хим. стойкостью, не тускнеет со временем, и декоративные покрытия из него улучшают внешний вид изделий. Толщина таких покрытий 1 -ь 3 мкм (см. также Декоративные покрытия). Катодные антикоррозионные покрытия из золота довольно дорогостоящи, поскольку их толщина должна быть не менее 30—35 мкм (см. также А нти-коррозионные покрытая). Герметизирующие и защитные покрытия (толщиной 15—20 мкм) практически непроницаемы для кислорода, водорода, азота, сероводорода, сернистого газа, окислов азота и др. газов при т-ре до 800—900° С, что обеспечивает герметичность (напр., при уплотнении швов) и защиту изделий от взаимодействия с этими газами (см. также Защитные покрытия). Оптические покрытия (толщиной обычно около 0,1—0,2 мкм) отличаются значительной стабильностью, высокой (болео 90%) отражательной способностью в инфракрасной области спектра и уступают покрытиям из др. металлов лишь в его ближней видимой и ультрафиолетовой частях (см. такжо Оптические покрытия). Электропроводящие покрытия (толщиной 1- -3 мкм) обеспечивают стабильную и высокую электропроводность поверхности изделий. Антифрикционные покрытия характеризуются низким коэфф. трения (см. [c.465]


    Электропроводящие свойства лакокрасочных покрытий обусловлены образованием в полимерном связующем цепочных структур электропроводящего наполнителя. При высоких концентрациях электропроводящего наполнителя, например при введении 35— 40 % карбонила никеля, проводимость ряда полимеров соизмерима с проводимостью металла. Примером таких эмалей является ХС-928, АК-562, ХС-5132. Эмали наносят в два слоя, так чтобы общая толщина пленки составляла 100—170 мкм, [c.59]

    При контроле толщины медного покрытия стенок отверстия рассматриваемым методом измеряется активное сопротивление образованной покрытием электропроводящей трубки. На рис. 6.2 представлена схема, поясняющая реализацию метода НК печатных плат. Измеренное значение сопротивления К при известных значениях толщины платы / (длина трубки), диаметра металлизируемого отверстия с/отв и удельного электрического сопротивления меди рси однозначно характеризует толщину покрытия Гок  [c.509]

Рис. 15. Диэлектрическое покрытие электропроводящей трубы, подверженное электризации плотностью тока /. Рис. 15. <a href="/info/885646">Диэлектрическое покрытие</a> электропроводящей трубы, подверженное <a href="/info/382609">электризации плотностью</a> тока /.
    Покрытия получают электроосаждением на основном металле, служащем проводником. Металл, на который наносится покрытие, погружается в электропроводящий раствор, содержащий соли этого металла. Катодом служит основной металл при использовании ЭДС от внешнего источника, а анодом — стержень или лист покрывающего металла. В этом случае он переходит в раствор, как только на катоде происходит осаждение, поддерживая таким образом концентрацию ионов металла в растворе. [c.85]

    Проанализировать зависимость а от перечисленных параметров можно на материале задачи об электризации диэлектрического покрытия электропроводящей трубы (см. выше). [c.92]

    Пигментирование лакокрасочных материалов является основным методом регулирования декоративных свойств покрытий — цвета и непрозрачности. Введение пигментов в лакокрасочные материалы позволяет регулировать важнейшие свойства композиционных материалов — деформационно-прочностные, изолирующие, противокоррозионные, адгезионные, а также получать покрытия со специальными свойствами — электропроводящие, электроизолирующие, теплостойкие, огнезадерживающие, антифрикционные, противообрастающие и т.д. [c.101]

    Для измерения интенсивности мягких -излучателей применяют так называемые торцовые счетчики. Такой счетчик представляет собой стеклянный баллон, внутренняя поверхность которого, являющаяся катодом, покрыта электропроводящим слоем (обычно слоем меди). Анодом счетчика служит стальная или вольфрамовая нить толщиной 0,15—0,3 мм. Один конец нити впаян в верхнюю часть баллона, а на другом конце ее напаяна маленькая стеклянная бусинка, предотвращающая ложные раз- [c.63]

    Если аппарат выполнен из диэлектрического материала, то покрытие внешних стенок проводящими материалами и заземление не устраняют возможности возникновения искровых разрядов на внутренней диэлектрической поверхности. Защита от поверхностных разрядов внутри оборудования и от разрядов при пробое диэлектрической стенки аппаратов и коммуникаций выполняется так же, как и защита от разрядов с диэлектрических поверхностей. Эффективным средством защиты диэлектрических поверхностей от статического электричества является покрытие их электропроводящими эмалями, удельное электрическое сопротивление которых составляет 1 —10 Мом-м. [c.173]

    Применяют М. как электропроводящие клеи, герметики и защитные лакокрасочные покрытия (от коррозии и действия микроорганизмов), для изготовления вкладышей подшипников, токосъемов, магн. захватов и лент, технол. оснастки, экранов для защиты от электромагн. полей и действия ионизирующих излучений и др. [c.48]

    Покрытие пола и обувь считаются электропроводящими, если удельное сопротивление между электродом, установленным на полу, и землей или между электродом внутри обуви и наружным электродом, не превышает 100 кОм-м. [c.176]

    Применение. Линейные П. используют как пластич. массы, полиуретановые волокна, термоэластопласты, для получения искусств, кож, клеев (см. Клеи синтетические), вальцуемых П. Сетчатые П. используют как пенополиуретаны, уретановые эластомеры, лаковые покрытия (см. Полиуретановые лаки), герметики. Полиуретановые иономеры применяют для получения латексов, используемых в лакокрасочной пром-сти, для приготовления клеев, произ-ва электропроводящих материалов, в медицине. [c.33]

    Для придания поверхности изделий электропроводящих свойств применяются различные методы в зависимости от материала неметаллического изделия. В данном случае эти методы должны сочетаться с необходимостью прочного сцепления покрытия с основой. [c.430]


    Электропроводящие полимерные пленки наносят на поверхность электрода осаждением из раствора соответствующего мономера с последующей его полимеризацией под действием тлеющего разряда, радиации или света. Такие пленки можно получить и при электрохимическом инициировании полимеризации. В частности, при электрополимеризации пиррола в присутствии порфиринов, фталоцианинов и других реагентов получают пленки, содержащие эти модификаторы. Электрохимическая полимеризация имеет ряд преимуществ перед химической. Во-первых, продуктом реакции являются пленки, локализованные уже на поверхности электрода и имеющие хорошую электропроводность. Другое достоинство метода - высокая стехиометрия процесса, позволяющая получать достаточно чистые полимеры. И наконец, свойства полимерного покрытия легко контролировать в процессе его получения. В зависимости от условий осаждения мономера, состава раствора и способа инициирования можно в широких пределах изменять электропроводящие свойства полимерных пленок и их проницаемость по отношению к различным ионам. [c.482]

    Наиболее широко для модифицирования электродов применяются электропроводящие полимерные покрытия на основе полипиррола [c.483]

    Электропроводящие свойства полимерных пленок зависят также от способа их получения. В большинстве случаев трудно получить однородное равномерное покрытие поверхности электрода. Для оценки степени покрытия электродной поверхности иммобилизованным модификатором используют зависимость катодных (или анодных) токов в условиях циклической вольтамперометрии от скорости развертки потенциала. Величина заряда, полученная интегрированием пика циклической кривой, характеризует степень заполнения поверхности электрода лишь в том случае, если в переносе электронов участвует вся поверхность ХМЭ, а не только несколько внутренних слоев. В противном случае суммарный заряд зависит от скорости развертки - чем она медленнее, тем большая часть пленки будет участвовать в переносе заряда. [c.484]

    СКОРО осаждения слоя металла на диэлектрик и закапчивается электрохимическим осаждением отделочных металли- ческих покрытий на полученный в начале электропроводящий металлический слой. [c.21]

    Ре(СК)Г 0,05 М H2SO4 ВА Диск и кольцо из керамики, покрытой электропроводящим материалом [c.788]

    Площадь основного металла, на которую распространяется катодная защита, зависит от электропроводимости среды. В центре трехмиллиметрового дефекта в цинковом покрытии по стали, помещенной, например, в дистиллированную или мягкую воду (с низкой электропроводимостью), может наблюдаться ржавление основного металла. Однако в морской воде, которая является хорошим проводником, сталь защищается цинком на расстоянии в несколько дециметров от края цинкового покрытия. Такое различие в поведении обусловлено тем, что в электропроводящей среде плотность тока, необходимая для катодной защиты, обеспечивается на значительном расстоянии, в то время как в среде с низкой электропроводимостью плотность катодного тока быстро падает по мере удаления от анода. [c.233]

    В качестве электропроводящих волокон при производстве фильтровальных материалов могут быть использованы металлические или неметаллические волокна, например, из углерода или графита, или неметаллические с покрытием из металла, а также из стекла или огне-утюр/гюит материала в соединении с металлически ми волокнами, например, из алюминия. [c.113]

    Многае ЭСНК ранних выпусков, находящиеся в эксплуатации, а также некоторые разработки последних лет, созданные при участии зарубежных фрфм, имеют условные обозначения, которые не подчиняются какому-либо общему правилу, например,ПМД-70 - переносной магнитный дефектоскоп, Элкометр 345 - толщиномер покрытий на металлическом электропроводящем основании. [c.157]

    Толщиномеры изоляционных покрытий предназначены для контроля толщины изоляционного покрытия стальных трубопроводов при их строительстве и ремонте. Принцип работы приборов основан на использовании зависимости силы притяжения между стальной поверхностью и магнитом от расстояния между ними или зависимости электромагнитной индукции от расстояния между замкнутым магнитопроводом и стальной поверхностью. Технические характеристики некоторых типов толщиномеров приведены в табл. 5.13. Приборы могут работать при температуре окружающего воздуха от -10 до +40 С и относительной влажности до 95 % при температуре 25 °С, т.е, в зимнее время их можно принять только в отапливаемых помещениях. Магнитные толщиномеры (МТ) различных модификаций могут измерять толщины покрытий из немагнитных электропроводящих и диэлектрических материалов. Для труб из неферромагнитных материалов (медь, алюминий) выпускается вихретоковый толхцино-мер ВТ-ЗОН. [c.105]

    Толщшюмеры диэлектрических покрытий на электропроводящих основаниях. К диэлектрическим покрытиям на электропроводящем основании относятся различные оксидные, фосфатные, лакокрасочные, керамические, эмалевые, пластмассовые и другие покрьпия на магнитных и немагнитных металлах и сплавах. Толщиномеры в этом случае представляют собой измерители зазора. Выбрав достаточно бо п.шое значение обобщенного параметра контроля, можно получить хорошую чувствительность к зазору при малой погрешности, вызванной влиянием изменения удельной электрической проводимости и толщины основания. Благодаря этому удается создать толщиномеры без применения специальных схем, предназначенных для ослабления влияния мешающих факторов на показания приборов. В этих приборах применены трансформаторные накладные ВТП, благодаря чему снижена погрешность измерений и расширен диапазон допустимых температур окружающей среды. [c.178]

    Толщиномеры электропроводящих покрытий на электропроводящем основании. К электропроводящим покрытиям относятся различные виды гальванических и плакировочных покрытий. Покрытия могут бьпъ как ферромагнитными (никелевые), так и неферромагнитными (медные, цинковые, золотые, серебряные и т. д.). Материал основания может быть магнитным и немагнитным. Многообразие комбинаций покрытий и оснований приводит к необходимости применения специализированных приборов и сложных методик контроля, которые заключаются в предварительных градуировках приборов по контрольным образцам [c.178]

    Катодную защиту стальной арматуры в железобетоне применяют для свай, (фундаментов, дорожных сооружений (в т. ч. горизонтальных покрытий) и зданий. Арматура, сваренная, как правило, в единую электрич. систему, корродирует при проникновении в бетон влаги и хлоридов. Последние могуг попадать в результате воздействия морской воды или использования солей-антиобледенителей дорожных сооружений, применения хлоридов для ускорения твердения бетона. Весьма эффективна санация бетона старых зданий с установкой катодной защиты. При этом устанавливают первичные аноды из кремнистого чугуна, платинированных титана или ниобия, фафита, титана с металлооксидным покрытием, к-рые обеспечивают подвод тока к вторичным (распределительным) анодам (титановой сетке с металлооксидным покрытием или электропроводящим неметаллич. покрытием, титановому стержню с покрытием), расположенным вдоль всей пов-сти сооружения и закрытым сверху относительно тонким слоем бетона. Потенциал арматтоы регулируют, изменяя внещ. ток. [c.459]

    Толщиномеры электропроводящего слоя. Вихретоковые толщиномеры целесообразно применять для контроля электропроводящих слоев толщиной не более 5-10 мм. Эги приборы особенно эффективны для измерения толщин до 0,3 мм как правило, их применяют для контроля неферромагнитных слоев. Существуют одно-, двух - и трехпараметровые толщиномеры. Однопараметровые приборы практически не применяют из-за больших погрешностей, вызываемых влиянием вариации зазора (даже при плотном притяжении ВТП). Из двухпараметровых приборов наиболее широко применяются толщиномеры для контроля толщины стенок труб и аппаратов го неферромагнитных материалов с малой удельной электрической проводимостью. Погрешность толщиномера не превышает допустимой лишь при постоянном значении удельной электрической проводимости объекта. Микропроцессорный вихретоковый толщиномер ВТ-51НП предназначен для контроля диэлектрических покрытий на деталях из немагнитных металлов (рисунок 3.4.20). В толщиномере используется микропроцессор, благодаря которому введено кнопочное управление установкой нуля и верхнего предела, упрощающее процесс подготовки к работе  [c.178]

    Измерение толщин диэлеюр№1еских покрытий на электропроводящих основаниях — это измерение зазора между ВТП и поверхностью объекта контроля. Толщиномеры диэлектрических покрытий обеспечивают высокую чувствительность к изменению толщины покрытий. Вихретоковые толщиномеры, позволяющие измерять толщины электропроводящих изделий, получили не такое широкое распространение, как толщиномеры для измерения толщины диэлектрических покрытий. [c.245]

    С какой целью в электролит для наиссония электрохимического покрытия вводится электропроводящая добавка Приведите при.меры, [c.292]

    Наряду с электрофоретическим методом нанесения антикоррозионных, лакокрасочных, декоративных, антифрикционных покрытий на. поверхности электропроводящего тела предложен диффузиофоретический метод. Его преимущество состоит в том, что он не связан с расходом электроэнергии и пригоден не только для проводящих тел. В основе метода лежит диффузиофоретический транспорт на поверхность, инициируемый протекающей на поверхности химической реакцией. Например, таким образом получены диффузиофоретические покрытия на поверхности медной подложки при добавке в бутадиенстирольный латекс электролита специального состава. [c.256]

    В процессе нанесения покрытий контролируют очистку и подготовку поверхности, соблюдение технологии выполнения работ соответствие проектной толщины готового покрытия на металлической (толщиномерами МТ-ЗОН, МИП-10, МП-20Н, МТ-40НЦ) и бетонной (визуальным осмотром) поверхностях сплошность на металлической (электродефектоскопами ЭД-4 или ЛКД-1М, а на покрытиях, содержащих электропроводящие наполнители, только дефектоскопом ЛКД-1М) и бетонной поверхностях (тщательным визуальным осмотром) адгезию (методом решетчатого надреза) внешний вид (визуально на отсутствие подтеков и пропусков покрывных слоев). Количество отслаиваний армирующего материала от металлической или бетонной поверхности площадью до 20 см допускается не более двух на 1 м но ие более 10% общей площади покрытия. [c.154]

    Осн. преимущества В. л. м. перед традиц. лакокрасочными материалами малое содержание (или отсутствие) орг. р-рителей, что обусловливает меньшую пожаро- и взрывоопасность произ-ва и применения В. л. м., нх безвредность, а также существенную экономию орг. р-рителей (200-400 кг иа 1 т лакокрасочного материала) возможность нанесения на влажную пов-сть, благодаря чему исключается операция ее сушки (или обдувки) после подготовки под окраску сокращение расхода электроэнергии на вентиляцию сушильных камер. Недостатки В. л. м. относительно малая стабильность водных р-ров пленкообразователей и необходимость отверждения покрытий при высоких т-рах. Кроме того, в обычных условиях электроосаждения (без применения электропроводящих наполнителей, напр, сажи) м. б. по- [c.399]

    Как зоке отмечалось выше, к пленочным электродам относятся электроды, полученные нанесением на инертную электропроводящую подложку (металл, углеродный материал и др.) другого материала. Используют химические или электрохимические способы нанесения пленочных покрытий, а также напыление материала пленки в вакуу ме. Поскольку ртуть выделяется в виде равномерной пленки только на металлах, образующих амальгаму, на подложки из углеродных материалов, платиновых металлов и др. предварительно наносят пленку золота или серебра. Таким образом изготавливают стационарные ртутные пленочные электроды (РПЭ). Последние представляют собой тонкую пленку ртути (1-100 мкм), нанесенную электрохимическим или химическим способом на токопроводящую подложку. [c.87]

    Используют SnOj в виде порощков и керамики в произ-ве прозрачных, электропроводящих и теплоотражающих материалов, как белый пигмент в произ-ве стекла и жаропрочных эмалей и глазурей, катализатор р-ций замещения и гидролиза. Тонкие пленки SnO , нанесенные на стеклянные или полиэтиленовые подложки, используют в качестве антиобледенителей в самолетах, автомобилях и др транспортных ср-вах, теплоизолирующих окон в по ешениях, обогреваемых солнечным светом, прозрачных проводящих покрытий в электронных приборах Касситерит-сырье в произ-ве Sn. [c.381]

    Для изучения структуры пов-сти посредством РЭМ к образцу предъявляется ряд требований. Прежде всего, его пов-сть должна быть электропроводящей, чтобы исключить помехи за счет накопления поверхностного зарада при сканировании. Кроме того, нужно всемерно повышать отношение сигаал/шум, к-рое наряду с параметрами оптич. системы определяет разрешение. Поэтому перед исследованием на диэлжтрич. пов-сти пугем вакуумного испарения или ионного распыления наносят тонкую (15-20 нм) однородную пленку металла с высоким коэф. вторичной электронной эмиссии (Аи, Аи-Р<1, Р1-Р(1). Биол. объекты, содержащие, как правило, большое кол-во воды, перед нанесением покрытия необходимо зафиксировать спец. хим. обработкой и высушить, сохранив естеств. микрорельеф пов-сти (сушка в критич. точке с использованием сжиженных СО и N20, хладонов или вакуумнокриогенными методами). [c.440]

    Мягкой кисточкой нанесите на поверхность с рисунком электропроводящий порошок. Можно, например, растолочь в ступке грифель простого карандаша или графитовый стержень батарейки. По краям рисунка прижмите к поверхности, покрытой графитом, тонкие оголенные медные проволочки (они будут служить токоотводами) и соедините их между собой. Восковой слепок подвесьте в стакан, налейте электролит, опустите медный электрод и соберите такую же схему, как и в опытах с меднением. Но в отличие от гальваностегии тут нужен намного меньший ток, примерно 5-10 мЛ. Поэтому придется передвинуть движок реостата или же подобрать другое радиосопротивление. [c.98]

    В области электрохимии пповодилось изучение кинетики реакций быстро-го переноса заряда [216] и реакций адсорбции методами хронопотенциометрии и полярографии с использованием восстановления комплекса Т1(1) - дицик-логексил-18-краун-6. Сообщается также, что потенциал полуволны при двухэлектронном полярографическом вогстановлении Mg + [2, 2, 1]-криптата в карбонате пропилена быд более катодным, чем при восстановлении сольватированного катиона Mg + [ 218]. В тонкой пленке дибензо-18-краун-6, помещенной между двумя электродами, покрытыми напыленным серебром, наблюдалось электронное переключение между двумя электропроводящими состояниями [2191. [c.258]

    Г альваностегия — метод электрохимического нанесения металлических покрытий на электропроводящие поверхности. [c.61]


Смотреть страницы где упоминается термин Покрытия электропроводящие: [c.797]    [c.690]    [c.443]    [c.282]    [c.182]    [c.400]    [c.213]    [c.30]   
Химия кремнезема Ч.1 (1982) -- [ c.599 ]

Статическое электричество в химической промышленности изд2 (1977) -- [ c.166 ]

Температуроустойчивые неорганические покрытия (1976) -- [ c.0 ]

Основы переработки пластмасс (1985) -- [ c.347 ]




ПОИСК





Смотрите так же термины и статьи:

Пол электропроводящий



© 2025 chem21.info Реклама на сайте