Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний восстановитель

    Среди элементарных веществ к типичным восстановителям принадлежат активные металлы (щелочные и щелочноземельные, цинк, алюминий, железо и др.), а также некоторые неметаллы, такие, как водород, углерод (в виде угля или кокса), фосфор, кремний. При этом в кислой среде металлы окисляются до положительна заряженных ионов, а в щелочной среде те металлы, которые образуют амфотерные гидроксиды (например, цинк, алюминий, олово), входят в состав отрицательно заряженных анионов или гидроксокомплексов. Углерод чаще всего окисляется [c.164]


    Для металлов, не восстанавливаемых ни углем, ни оксидом углерода (И), применяются более сильные восстановители водород, магний, алюминий, кремний. Восстановление металла из его оксида с помощью другого металла называется металлотермией. Если, в частности, в качестве восстановителя применяется алюминий, то процесс носит название алюминотермии. Такие металлы, как хром, марганец, получают главным образом алюминотермией, а также восстановлением кремнием. Если мы подсчитаем АС° реакции [c.335]

    Химические свойства. Кремний является относительно инертным веществом. Он реагирует с сильными окислителями и восстановителями. [c.483]

    В тех случаях, когда приготовляемыми растворами предполагают пользоваться в течение длительного времени, следует принимать во внимание устойчивость их в условиях хранения. Так, растворы восстановителей могут менять свою концентрацию, медленно окисляясь атмосферным кислородом, а растворы щелочей — при взаимодействии с атмосферным диоксидом углерода или в результате постепенного выщелачивания диоксида кремния (составной части стекла). Некоторые вещества неустойчивы к действию света или тепла. В большинстве случаев концентрированные растворы проявляют большую устойчивость, чем разбавленные. Поэтому разбавленные растворы таких веществ обычно приготовляют непосредственно перед опытом путем разбавления концентрированного раствора, который может храниться длительное время без заметного изменения концентрации. Так, 0,02 н. раствор тиосульфата натрия может быть приготовлен разбавлением 0,1 н. раствора, концентрация которого при правильном хранении не меняется в течение 2—3 месяцев. [c.12]

    Получение простых веществ химическим восстановлением соединений. В качестве восстановителя применяют уголь и оксид углерода (Н), кремний, металлы (металлотермия), водород. Выбор того или иного восстановителя можно сделать при сопоставлении значений энергии Гиббса образования соответствующих соединений. [c.192]

    Из двух модификаций кремния химически более активным является аморфный кремний. Практически во всех реакциях кремний выступает в роли восстановителя. Так, кремний реагирует с кислородом (при нагревании), образуя двуокись кремния 5102  [c.314]

    Углерод и кремний в свободном состоянии и их соединения, в которых они проявляют степень окисления +2, — обычно восстановители. Вода и разбавленные кислоты не действуют на углерод и кремний. Кремний взаимодействует со щелочами, вытесняя водород и образуя соли кремниевой кислоты  [c.204]

    Главным потребителем кокса является алюминиевая промышленность, где кокс служит восстановителем (анодная масса) при выплавке алюминия из алюминиевых руд. Кроме того, кокс используют в качестве сырья при изготовлении графитированных электродов для сталеплавильных печей, для получения карбидов (кальция, кремния) и сероуглерода. [c.29]


    Способы производства марганца. Металлический марганец получают восстановлением его различными восстановителями алюминием или кремнием (алюмотермический и силикотермический способы), в результате чего выделяемый металл содержит 88— 96% Мп (от MPI до МР4), а также электролизом (электрохимический способ, МРО 99,7% Мп). [c.280]

    Таким образом, с помощью графика вида рис. 83 легко решить целый ряд задач, в частности, выбрать наилучший восстановитель. Так, из него следует, какой из двух возможных восстановителей — кремний или углерод — может обеспечить лучшее восстановление до V при 1000, [c.278]

    Потребность в нефтяном коксе, как более дешевом и высококачественном материале, чем кокс, получаемый на основе угля (так называемый пековый), весьма значительна и непрерывно возрастает. Основной потребитель нефтяного кокса - алюминиевая промышленность кокс служит восстановителем (анодная масса) при выплавке алюминия из алюминиевых руд. Удельный расход кокса на производство алюминия весьма значителен и составляет 550-600 кг на 1 т алюминия. Из других областей применения нефтяного кокса следует назвать использование его в качестве сырья для изготовления графитированных электродов для сталеплавильных печей, для получения карбидов (кальция, кремния) и сероуглерода. Специальные сорта нефтяного кокса применяют как конструкционный материал для изготовления химической аппаратуры, работающей в условиях агрессивных сред. [c.43]

    Элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ составляют IVA группу Периодической системы Д. И, Менделеева. Общая электронная формула валентного уровня атомов этих элементов ns np . Преобладающие степени окисления элементов в соединениях ( + 11) и ( + 1V), По электроотрицательности элементы С и Si относят к неметаллам. Ge, Sn и РЬ — к амфотерным элементам с возрастающим металлическим характером по мере увеличения порядкового номера. Поэтому в соединениях элементов со степенью окисления (IV) связи ковалентны для свинца (И) и в меньшей степени для олова (И) известны ионные кристаллы. В целом устойчивость степени окисления ( + IV) уменьшается, а устойчивость степени окисления ( + 11) увеличивается от С к РЬ. Соединения свинца (IV) —сильные окислители, соединения остальных элементов в степени окисления (И) — сильные восстановители. [c.202]

    Степень окисления 4-2 мало характерна для углерода и кремния (5Ю, СО). Германий и олово наиболее устойчивы в соединениях, в которых они проявляют степень окисления 4-4, свинец +2. Поэтому соединения германия -Ь2 и олова +2 являются сильными восстановителями. Например  [c.75]

    Металлы проявляют почти всегда только восстановительные свойства. Неметаллы же ведут себя в окислительно-восстановительных реакциях двойственным образом. Они бывают не только окислителями, но и восстановителями (за исключением фтора), причем иногда весьма активными. Так, например, электродный потенциал кремния в кислой среде, содержащей ионы фтора Е , по своему значению близок к значению электродного потенциала марганца  [c.338]

    Кремний. Аморфный кремний получают из кремнезема, применяя для этого очень энергичные восстановители, например магний  [c.286]

    Применение в данном случае углерода в качестве восстановителя приводит к образованию наряду с кремнием карбида кремния. [c.483]

    В качестве восстановителя можно использовать смеси порошкообразных металлов, а также смеси металлов с кремнием, например  [c.21]

    Кремний можно получить, используя магний как восстановитель  [c.203]

    В этом отношении бор представляет собой элемент, близко стоящий к углероду и кремнию, относящимся к окислителям—восстановителям. [c.436]

    При действии сильных восстановителей, например, щелочных и щелочноземельных металлов, алюминия и водорода, кремний проявляет свои окислительные свойства, как, например  [c.483]

    Помимо магния, в качестве восстановителя можно применять другие щелочноземельные и щелочные металлы, алюминий, углерод и др., а вместо двуокиси кремния можно брать галиды кремния. [c.483]

    Кремний технической чистоты (95—98%) получают в электропечах восстановлением SiO2 с помощью кокса. В лаборатории в качестве восстановителя применяют магний. При этом образуется сильно за1 рязненный примесями коричневый порошок кремния. Последний перекристаллизацией из металлических расплавов (Zn, AI и др.) можно перевести в кристаллическое состояние. Необходимый для полупроводниковой техники кремний особой чистоты получают восстановлением SI I4 цинком при высокой температуре  [c.411]

    Полученный по этому способу кремний содержит 2—5% примесей. Необходимый для изготовления полупроводниковых приборов кремний высокой чистоты получают более сложным путем. Природный кремнезем переводят в такое соединение кремния, которое поддается глубокой очистке. Затем кремний выделяют из полученного чистого вещества термическим разложением илн действием восстановителя. Один из таких методов состоит в превращении кремнезема в хлорид кремния Si I4, очистке этого продукта и носстаповлении нз него кремния высокочистым цинком. Весьма чистый кремний можно получить также термическим разложением иодида кремния SII4 или силана SiH . Получающийся кремний содержит весьма мало примесей и пригоден для изготовления некоторых полупроводниковых приборов. Для получения еще более чистого продукта его подвергают дополнительной очистке, например, зонной плавке (см. 193). [c.508]


    Из табл. 6 видно, что СгОз восстанавливается монооксидом углерода ири более низких температурах, чем VjOs и М0О3. Аналогично этому ванадиевые и молибденовые катализаторы не могут легко восстанавливаться этиленом ири температуре его полимеризации, поэтому для достижения высокой активности необходимо использовать промотор, служащий восстановителем. Как показано в табл, 6, температура плавления оксида резко возрастает ири переходе от хрома к ванадию и молибдену. Низкая точка плавления СгОз обеспечивает его подвижность по поверхности оксида кремния и тем самым высокую дисперсность. [c.188]

    Па технологию и качество карбида кремния влияют примеси, содержащиеся в шихте. Они способствуют переходу окиси крем-ння в устойчивую форму и снижают скорость реакции. Вредными примесями в шихте являются окислы алюминия, железа, магния, кальция и других металлов, а также сера. Окиси глинозема, магния и кальция склонны к образованию силикатов, способствующих спеканию шихты, а окись железа приводит к образованию сплавов железа с кремнием. Расход электроэнергии на 1 т карбида кремния— от 8000 до И ООО квт-ч, что составляет 25—347о всех затрат. Суммарный расход углеродистого материала (аитрацит + иефтяной кокс) мало зависит от сорта производимого карбида кремния и колеблется, в сравнительно узких пределах (1200—1300 кг/т готового продукта). Из этого количества 50% падает на нефтяной кокс. В дальнейшем предполагается увеличение этой доли, что диктуется экономическими соображениями. Стоимость углеродистого материала составляет 25% от заводской себестоимости, поэтому затраты на восстановитель весьма ощутимо сказываются на стоимости готового продукта. [c.32]

    По существующим условиям в углеродистом материале, используемом в качестве компонента шихты, содержание золы не должно превышать 3 вес. %, а серы 0,5 вес. %. Увеличение доли нефтяного кокса в суммарном количестве восстановителя позволит также существенно снизить содержание золы и тем самым количество примесей в карбиде кремния. Поскольку при производстве карбида кремния наибольшие размеры зерен углеродистых ма-1ериалов в шихте составляют 3—3,5 мм, для этой цели может быть рекомендован кокс, полученный коксованием в кипящем слое, [юсле предварительного обессеривания его до требуемых норм. [c.32]

    В качестве восстановителя оксидов применяют также кремний (силикотермия), водород (водородотермия), кальций (кальцийтермин)  [c.194]

    Гетерополикислоты. Хорошо известно образование фосфорномолибденовой кислоты Hз[P(MOзOl )J на образовании этого окрашенного в желтый цвет соединения основаны различные методы определения малых количеств фосфора в металлах, горных породах и т. д. Подобные же соединения образуют кремний и мышьяк. При обработке гетерополикислот названных элементов подходящими восстановителями образуются продукты восстановления (церулеокислоты), окрашенные в интенсивно синий цвет. Это позволяет еще больше повысить чувствительность методов определения. [c.213]

    КАРБИДЫ — соединения металлов или неметаллов с углеродом. К.— тугоплавкие твердые вещества, нерастворимые ни в одном из известных растворителей. Наиболее распространенный метод получения К- заключается в нагревании до температуры около 2000 С смеси соответствующего металла или его оксида с углем в атмосфере инертного или восстановительного газа. Преобладающее большинство К. (карбид бора В4С, кремния Si , титана Ti , вольфрама W , циркония Zr и др.) очень твердые, жаропрочные, химически инертные. К. применяют в производстве чугунов и сталей, различных сплавов современной техники, используют в качестве абразивных материалов, восстановителей, рас-кислителей, катализаторов и др. К. вольфрама и титана входят в состав твердых и жаропрочных сплавов, из которых изготовляют режущий и буровой инструменты из К. кремния (карборунд) изготовляют шлифовальные круги и другие абразивы К. железа Feg (цементит) входит в состав чугунов и сталей К. кальция применяется в производстве ацетилена, цианамида кальция и др. К. используют как материалы для электрических контактов, разрядников и многого др. (см. Кальция карбид. Карборунд). [c.119]

    В водных растворах Н2СО3, СО2 и СОз не могут быть восстановлены до НСООН, СО, НСОО или С204 . Кислородные соединения кремния в водных растворах также не восстанавливаются обычными восстановителями. [c.562]

    КРЕМНЕВОДОРОДЫ (силаны) — соединения кремния с водородом. Предельные К-— силаны, аналоги предельных углеводородов, общей формулы 51лН2 21 предполагают, что существуют и непредельные К.— силены, аналоги этиленовых углеводородов, и силины — аналоги ацетиленовых углеводородов. К. отличаются неустойчивостью силано-вых цепей —31—31—. Плотность, температуры плавления и кипения К. выше, чем у соответствующих углеводородов. Низшие К.— газы с неприятным запахом высшие — летучие ядовитые жидкости с еще более неприятным запахом. Силаны растворяются в спирте, бензине, сероуглероде. Характерным свойством силанов является их чрезвычайно легкое окисление для некоторых силанов реакция окисления протекает с сильным взрывом. Если в закрытые сосуды с раствором силана в сероуглероде попадает воздух, происходит взрыв. Силаны — хорошие восстановители, быстро гидролизуются. Силаны получают разложением силицидов металлов кислотами или щелочами, восстановлением галогеносиланов гидридами или водородом и другими методами. [c.138]

    Большое практическое значение имеют сплавы кремния с алюминием — силул(ины, содержащие до 4,5—14i% Si, по 0,5% Mg и Мп, до 1% Fe, и силикоалюминий, в состав которого входит 25— 40% А1, 50—60% Si и до 5% Fe. Силумины отличаются легкостью и прочностью, применяются для отливок. Силикоалюминий используется в качестве восстановителя и для получения спецспла-вов. Получают его в электропечах восстановлением древесным углем смеси каолина и кварца. Силициды в системе Л1—Si не установлены. [c.12]

    В металлургии большое значение имеет сплав железа с кремнием — ферросилиций. Он применяется для раскисления многих марок стали и для получения кремнеуглеродистых ферросплавов. Ферросилиций с содержанием 9—17% 51 выплавляется в доменных печах из кварца, железной стружки и кокса. Ферросилиций с высоким содержанием кремния — перспективный материал для изготовления деталей химической аппаратуры благодаря исключительной кислотостойкости. Он широко применяется в качестве восстановителя при выплавке силикомарганца, ферровольфрама, ферромолибдена. Добавка кремния к стали в виде ферросилиция при ее выплавке придает ей упругость, повышает устойчивость против коррозии. [c.13]

    Составьте уравнения реакций получения ванадия из его высшего оксида а) алюминотермическим путем б) силикотер-мическим путем (восстановитель — кремний). [c.128]

    ЦЕРИЙ ( erium, от названия астероида Церис) Се — химический элемент П1 группы 6-го периода периодической системы элементов Д. И. Менделеева, относится к лантаноидам, п. н. 58, ат. м. 140,12. Природный Ц. состоит из 3 стабильных изотопов, известны около 15 радиоактивных изотопов. Открыт Ц. в 1803 г. Берцелиусом и Хизингером и независимо от них Клапротом. Основным сырьем для получения Ц. является минерал монацит. Ц.— мягкий металл серого цвета, т. пл. 804 С. Химически активен. В соединениях проявляет степень окисления +3 и +4, чем и отличается от других редкоземельных элементов. Ц. применяют в производстве высокоплас-тичных и термостойких сплавов, для изготовления стекла, не темнеющего под действием радиоактивного излучения, для дуговых электродов, кремней зажигалок и др. Соли Ц. (IV) — сильные окислители, используются в аналитической химии для определения различных восстановителей. [c.283]

    Таким образом, с помощью графика вида рис. 103 можно решить целый ряд задач, в частности, выбрать наилучший восстановитель. Так из него следует, какой из двух возможных восстановителей — кремний или углерод — может обеспечить лучшее восстановление УаОз до V при 1000, 1500 и 2000 К. Восстановительная сшзсобность 51 с увеличением температуры падает. При 1000 К углерод не может восстанавливать УгОа, при 1500 К его уже можно применять в качестве восстановителя, а при 2000 К он становится более эффективным восстановителем, чем кремний. [c.291]

    При нагревании щелочноземельные металлы активно реагируют с водородом (давая гидриды), с галогенами, серой, азотом, фосфором, углеродом. Щелочноземельные металлы как типичные восстановители часто используют для получения многих других металлов и неметаллов (например, магний часто используют для восстановления кремния из SiOa). [c.327]

    Вор с водородом образует многочисленные бораны ВлИ,,. простеЙ1ииГ из них — диборам В ,1 U. 1 1о свойствам бораны сходны с водородными сосдммонннмн кремнии —силанами Si.rM,,, Так, бораны реаги )уюг с водой, играя роль восстановителя [c.202]


Смотреть страницы где упоминается термин Кремний восстановитель: [c.278]    [c.593]    [c.7]    [c.12]    [c.148]    [c.416]    [c.110]    [c.151]    [c.288]    [c.208]   
Руководство по неорганическому синтезу (1965) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановитель

Железо кремний сплав как восстановитель



© 2025 chem21.info Реклама на сайте