Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран от вольфрама

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]


    Исследовано коррозийное действие воды и воздуха на многочисленные сплавы урана. Более или менее подробно изучены системы из урана со следующими элементами натрий калий, медь, серебро, золото, бериллий, магний, цинк, кадмий, ртуть, алюминий, галлий, индий, церий, лантан, неодим, титан, германий, цирконий, олово, торий, ванадий, ниобий, тантал, висмут, хром, молибден, вольфрам, марганец, рений, железо, кобальт, никель, рутений, родий, палладий, осмий, иридий и платина. В большинстве случаев полная фазовая диаграмма еще не разработана. Недавно опубликованы описания систем уран—алюминий и уран—железо [11], уран—вольфрам и уран—тантал [12], уран—марганец и уран—медь [13]. g g [c.152]

    По окончании разложения железо частично или полностью переходит в трехвалентное состояние, поэтому перед титрованием окислителем необходимо предварительное восстановление железа любым из описанных ранее методов, например восстановление в редукторе Джонса. Амальгама цинка восстанавливает и другие элементы, обычно сопутствующие железу, например титан, ниобий, ванадий, хром, уран, вольфрам, молибден и мышьяк. В низших степенях окисления они также реагируют с перманганатом их присутствие вызывает завышение результатов определения железа. [c.380]

    Молибден, уран, вольфрам H I -(- HF [c.420]

    Габером и его сотрудниками было испробовано большое число катализаторов церий и сплавы или специальным образом приготовленные смеси его с железом, марганцем, лантаном марганец, приготовленный из амальгамы марганца осмий, рутений, уран, вольфрам, молибден и другие металлы. Вот, несколько дан ных, касающихся применения катализаторов, величины давления и полученных концентраций аммиака при различных, постоянно поддерживаемых температурах реагирующих веществ. Смесь азота и водорода содержала 3 об ема водорода на один об ем азота. [c.111]

    После растворения оксида железо существует частично или полностью в виде железа (П1). Поскольку для титрования стандартным раствором перманганата калия требуется, чтобы все железо присутствовало в виде железа (П), железо(П1), образовавшееся в результате растворения пробы, должно быть количественно восстановлено. Для этого можно использовать любую из методик, описанных выше для предварительного переведения вещества в соответствующую степень окисления. Обычно для восстановления железа (П1) используют сероводород или диоксид серы. Если раствор прокипятить, то избыток любого газа-восстановителя легко удалится, но следует принять меры предосторожности против повторного окисления л<елеза(П). Можно использовать и редуктор Джонса, но в нем восстанавливаются до более низких степеней окисления и сопутствующие железу элементы в руде, а именно, титан, ванадий, хром, уран, вольфрам, мышьяк и молибден. Поэтому результаты титрования окажутся завышенными. В то же время серебряный редуктор позволяет. проводить преимущественное восстановление железа (П1) в присутствии титана (IV) и хрома (III). [c.324]


    Система уран — вольфрам. Диаграмма состояния этой системы очень напоминает диаграмму системы уран—тантал. В сплавах с большим содержанием урана идет перитектическая [c.360]

    Платина Плутоний Радий Рубидий Рений Роди й Радон Рутений Сера Сурьма Скандий Селен Кремний Самарий Олово Стронций Тантал Тербий Технеций Теллур Торий Титан Таллий Тулий Уран Ванадий Вольфрам Ксенон Иттрий Иттербий Цинк Цирконий [c.187]

    H 1+HF Молибден — уран—вольфрам 381  [c.207]

    Система уран — вольфрам — кислород [c.286]

    Из побочных реакций, которые могут протекать в графитовой печи, главной является образование карбидов, что значительно ухудшает предел обнаружения таких элементов, как ниобий, тантал, вольфрам, бор, уран. Различные элементы в порядке убывания их летучести в графитовой печи можно представить в виде ряда  [c.152]

    Цирконий—гафний Ниобий, тантал Железо, алюминий Торий, протактиний Цирконий, ниобий Цирконий, ниобий, тантал, протактиний Кобальт, никель Цинк, медь, кобальт, железо, марганец, никель Железо, свинец, висмут Алюминий, индий, галлий, таллий Железо, протактиний Европий, мышьяк, германий, железо Молибден, уран, вольфрам Торий, протактиний, уран Ниобий, тантал, титан Ниобий, титан Никель, кобальт [c.420]

    Б земной коре также в больших количествах находятся соединения натрия, калия, кальция, марганца и др. Многие металлы в земной коре содержатся в небольших количествах. Так, содержание меди, магния, хрома, ванадия, циркония не превышает сотых долей процента. В тысячных долях процента исчисляется содержание таких металлов, как цинк, олово, свинец, никель, кобальт, церий, ниобий. Со ржание в земле таких необходимых для современной техники металлов, как уран, вольфрам, молибден, передается всего десятитысячными долями процента. Особенно мало в земной коре так называемых драгоценных (или благородных) металлов — платины, золота их содержание определяется величиной 5 -10 %. [c.315]

    Анализируемое вещество переводят в труднолетучее соединение предварительной химической обработкой, например, металлический уран в и.,08> алюминий в А1. 0.,, кальций в СаСО , вольфрам и некоторые другие металлы — в карбиды и т, д. [c.251]

    Химические знания — необходимая составная часть базовых, фундаментальных знаний, позволяющих инженеру, технологу, иссле> дователю достигать новых результатов в различных областях техники. Как одна из сторон материальной культуры, всей человеческой цивилизации техника всегда была производной от уровня развития химии. Неудивительно, что от химической компоненты получили свое название целые эры в развитии цивилизации каменный, бронзовый, железный век. Двадцатый век называют веком атомной энергии, химии синтетических материалов и проникновения в тайны живого. Технику XX в. невозможно себе представить без таких металлов, как алюминий, титан, используемых при строительстве самолетов и кораблей, цирконий, уран, свинец, бериллий, используемых в атомной технике, германий, кремний, мышьяк, галлий, олово, сурьма, используемых в полупроводниковой технике, без серебра в фотографии, без меди, алюминия в электротехнике, без таких металлов как хром, вольфрам, тантал, молибден и многих других, способствующих созданию высокопрочных, термостойких, коррозионноустойчивых материалов. Без этих материалов нельзя представить себе будущее нашей цивилизации .  [c.183]

    Тантал с пирогаллолом образуют комплекс в среде 4 и. раствора НС1 и 0,0175 М оксалата. Молярный коэффициент поглощения комплекса е в этих условиях составляет 4775. Оптическая плотность растворов пропорциональна концентрациям тантала до 40 мкг мл. Определению мешают молибден (VI), вольфрам (VI), уран (VI), олово (IV). Влияние ниобия, титана, циркония, хрома, ванадия (V), висмута, меди не. существенно, и его можно учесть введением их в холостой раствор. Определению тантала мешает фторид, платина, поэтому сплавление анализируемых проб нельзя проводить в платиновой посуде. [c.386]

    Реакция синтеза аммиака катализируется металлами, имеющими не полностью застроенные d- и /- электронные уровни. К ним относятся железо, родий, вольфрам, рений, осмий, платина, уран и некоторые другие металлы. В промышленности используются контактные массы на основе железа, например, катализатор ГИАП состава  [c.198]

    МОЛИБДЕН. ВОЛЬФРАМ. УРАН [c.122]

    Античные ученые, как известно, описали десять элементов, средневековые алхимики — четыре (см. гл. 4). В XVIII столетии были открыты такие газообразные элементы, как азот, водород, кислород и хлор, и такие металлы, как кобальт, платина, никель, марганец, вольфрам, молибден, уран, титан и хром. [c.92]

    Ванадатометрически определяют железо (II), вольфрам (IV), уран (IV) и другие металлы. Восстановители определяют методом обратного титрования, добавляя избыток ванадата и оттит-ровывая его затем раствором соли Мора. [c.290]

    Определение ликвидуса до 2400° в системе уран—вольфрам и до 2000° в системе уран—тантал описано Шраммом, Гордоном и Кауфманом [41]. В первом случае уран расплавляли в вол1ьфрамовом тигле и выдерживали при определенной температуре в течение времени, достаточного для того, чтобы обеспечить равновесное растворение вольфрама в уране. Расплавление проводилось в индукционной печи, показанной на рис. 50. После того как металл застывал, тигель отделяли от полученного таким образом образца сплава и поверхность образца зачищали. Затем слиток подвергали химическому анализу для установления состава ликвидуса при данной температуре. [c.183]


    К d-металлам VI группы периодической системы Д. И. Менделеева относятся хром Сг, молибден Мо и вольфрам W. Близок к ним по химическим свойствам уран U, входящий в семейство актиноидов. [c.354]

    Для оптической плотности раствора при 430 ммк вводят поправку, величина которой зависит от количества ванадия, найденного при 600 ммк. Вычитаемую поправку находят из соотношения 430= 600/1,64 (фильтрфотометр Спеккера). Мешают железо, титан, марганец (отделяют щелочным сплавлением), мышьяк, сурьма, олово, уран, вольфрам. Не мешают фосфорная кислота и умеренные количества алюминия. В случае больших количеств последнего прибавляют фторид. Избыток винной и этилендиаминтетрауксусной кислот снижает оптическую плотность. В присутствии оксалатов окраска вообще не появляется. [c.232]

    Вещества, имеющие структуру цеолитов и содержащие калий, натрий, литий, ванадий, хром, молибден, марганец, железо, кобальт, никель, серебро, медь, цинк, кадмий, свинец, висмут, сурьму, кальциГ , стронций, барий и элементы бериллий, магний, алюминий, церий, а также редкие элементы, бор, кремний, титан, цирконий, торий, уран, вольфрам [c.67]

    Для монохроматизацни света и регистрации спектров используют спектральные приборы с разными характеристиками. Выбор прибора определяется задачей анализа. Если спектр пробы, возбуждаемый в источнике света, сложен и содержит многочисленные линии элементов (например, вольфрам, молибден, уран, торий и др.), то необходимы спектрографы с большой разрешающей способностью. В том случае, если спектр прост, можно применять приборы с малой разрешающей силой, которые, как правило, светосильны и позволяют регистрировать малоинтенсивные линии. [c.97]

    Значение заряда для химических свойств чрезвычайно велико, особенно потому, что с его изменением меняются и остальные основные характеристики элемента (радиус, структура электронной оболочки). Одинаковость заряда часто влечет за собой большое сходство между членами различных групп периодической системы. Например, шестивалентный уран по хймическим свойствам очень похож на шестивалент ный вольфрам (при резком различии свойств у простых веществ). С другой стороны, для одного и того же элемента в разных валентных состояниях обычно характерны резко различные свойства. Например, двухвалентный Мп гораздо более похож на двухвалентное Ре, чем на семивалентный Мп. [c.471]

    Температурная зависимость процесса растворения водорода в металлах определяется знаком теплового эффекта. Для многих металлов (хром, железо, кобальт, никель, медь, серебро, платина, молибден и др.) ДЯ > О и с повышением температуры растворимость растет. Экзотермически поглощают водород (ДЯ < < 0) титан, цирконий, гафний, ванадий, ниобий, тантал, торий, уран и РЗЭ за счет образования металлидных фаз внедрения. В то же время есть металлы, в которых водород практически не растворяется. Это вольфрам, золото, цинк, кадмий, ртуть, индий. Если при растворении водорода кристаллохимическое строение металла не изменяется, в результате возникают твердые растворы внедрения. При растворении значительного количества водорода, как правило, кристаллохимическое строение металла-растворителя претерпевает изменения. Тогда образуются фазы внедрения. [c.295]


Смотреть страницы где упоминается термин Уран от вольфрама: [c.12]    [c.8]    [c.12]    [c.12]    [c.374]    [c.443]    [c.419]    [c.336]    [c.405]    [c.292]    [c.419]    [c.401]    [c.511]    [c.210]    [c.185]    [c.59]    [c.126]    [c.100]    [c.18]   
Химико-технические методы исследования (0) -- [ c.478 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам, отделение от уран

Вольфрам, сплав с ураном

Восстановление красителя Виктория голубой В титаном (III) (определение ванадия, молибдена, вольфрама, урана и осмия)

Гексафторид вольфрама урана

Группа VIA. Хром, молибден, вольфрам,уран

Диффузия урана в вольфраме

Дополнения к гл. 21-й. Хром, молибден, вольфрам, уран и марганец

Индукционная плавка сплавов урана с вольфрамом

Молибден. Вольфрам. Уран

Определение вольфрама и меди (железа или урана)

Определение вольфрама и меди (или урана)

Определение вольфрама, железа (урана) и кобальта

Определение вольфрама, урана и кобальта

Отделение урана от молибдена, вольфрама и ванадия

Получение надхромовой кислоты Молибден. Вольфрам. Уран

Система уран—вольфрам—кислород

Совместное восстановление для получения сплавов урана с вольфрамом

Урана, диаграмма состояния вольфрамом

Фториды хрома, молибдена, вольфрама и урана



© 2024 chem21.info Реклама на сайте