Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам, сплав с ураном

    Исследовано коррозийное действие воды и воздуха на многочисленные сплавы урана. Более или менее подробно изучены системы из урана со следующими элементами натрий калий, медь, серебро, золото, бериллий, магний, цинк, кадмий, ртуть, алюминий, галлий, индий, церий, лантан, неодим, титан, германий, цирконий, олово, торий, ванадий, ниобий, тантал, висмут, хром, молибден, вольфрам, марганец, рений, железо, кобальт, никель, рутений, родий, палладий, осмий, иридий и платина. В большинстве случаев полная фазовая диаграмма еще не разработана. Недавно опубликованы описания систем уран—алюминий и уран—железо [11], уран—вольфрам и уран—тантал [12], уран—марганец и уран—медь [13]. g g [c.152]


    Габером и его сотрудниками было испробовано большое число катализаторов церий и сплавы или специальным образом приготовленные смеси его с железом, марганцем, лантаном марганец, приготовленный из амальгамы марганца осмий, рутений, уран, вольфрам, молибден и другие металлы. Вот, несколько дан ных, касающихся применения катализаторов, величины давления и полученных концентраций аммиака при различных, постоянно поддерживаемых температурах реагирующих веществ. Смесь азота и водорода содержала 3 об ема водорода на один об ем азота. [c.111]

    Электролиз с ртутным катодом. Особенно удобным и важным методом разделения металлов является электроосаждение на ртутном катоде . Перенапряжение водорода на ртути очень велико (1,2 в), поэтому любой металл, потенциал выделения которого меньше указанного значения, может осаждаться на поверхности ртути металлы же, требующие отрицательных потенциалов, более чем —1,2 в, будут оставаться в растворе. Не осаждаются щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, а также вольфрам и уран. Метод с успехом применяют для удаления железа и подобных ему металлов из растворов алюминиевых сплавов, после чего основной элемент определяют весовым или другим способом. Он также широко используется при очистке урановых растворов . [c.110]

    В настоящее время как в зарубежной, так и в отечественной практике основными переплавляемыми материалами являются специальные стали, титан и его сплавы в больщих количествах переплавляются также молибден и его сплавы, цирконий. В последние годы в этих печах начали переплавлять гафний, вольфрам тантал, уран, ниобий, ванадий и ряд других металлов. В табл. 1 приведены имеющиеся в литературе данные по физическим свойствам некоторых из этих металлов. [c.5]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    При относительно небольшой плотности тока (0,01 а/смР-) оно достигает весьма значительной величины (1,2 в). Это обстоятельство может быть использовано для разделения металлов. При электролизе подкисленных растворов с применением ртутного катода все металлы, ионы которых разряжаются на ртути при потенциалах еще более отрицательных, чем ионы водорода, останутся в растворе. Не осаждаются в этих условиях щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам, уран. Таким образом удается отделить эти металлы от железа, хрома, цинка, кадмия и других металлов, которые разряжаются на ртути и образуют с ней амальгаму. Этот метод широко применяется при анализе алюминиевых сплавов для отделения железа. При анализе сталей железо таким же образом отделяется от алюминия, титана, ванадия и некоторых других компонентов сталей. Все эти металлы остаются в сернокислом растворе взятой навески стали, а железо уходит в амальгаму. Такое предварительное групповое разделение весьма облегчает весь ход анализа и может применяться для самых различных сплавов. [c.294]


    Калибровочные графики для обоих элементов были линейными в интервале 0—5 мг элемента в пробе. Анализ сплава, содержащего вольфрам и молибден, приведен в табл. VII.4. Пределы обнаружения в работе [172] не указаны, однако, судя по приведенным калибровочным кривым, они составляют около 0,02 л г для каждого элемента. В этой же работе аналогичным методом определяли также серу, селен, теллур, уран и рений. [c.100]

    Благодаря защитной пленке оксида хром чрезвычайно коррозионно стоек, поэтому его применяют для получения защитных п декоративных покрытий. Хром и молибден относятся к важнейшим компонентам сплавов и легированных сталей, которым они придают высокую коррозионную стойкость и механическую прочность. Молибден и вольфрам плавятся при 2600 и 3370 С соответственно поэтому из них изготовляют нити накаливания и их держатели в лампах, а также сетки н аноды в электронных трубках. Наконец, уран нашел применение в качестве ядерного горючего в атомных реакторах. [c.79]

    Система уран — вольфрам. Диаграмма состояния этой системы очень напоминает диаграмму системы уран—тантал. В сплавах с большим содержанием урана идет перитектическая [c.360]

    Эти элементы не дают отрицательных ионов, поскольку они не могут присоединять электроны, в отличие от элементов главной подгруппы — р-элемен-тов. Отдавать электроны атомы -элементов могут не только с внешнего, но и с предпоследнего слоя (который у хрома содержит 13 электронов). Таким образом, в химическом взаимодействии у атомов этих элементов принимают участие 2 электронных слоя внешний и предпоследний. Общее количество электронов, которые они могут отдавать, равно 6. В этом проявляется их сходство с элементами главной подгруппы, т. е, с р-элементами, К побочной подгруппе элементов VI группы относятся металлы хром, молибден, вольфрам, раньше к этой группе относили элемент уран, который в настоящее время причисляется к актинидам. Все они имеют очень важное значение как металлы, применяющиеся в технике для получения различных сплавов. Среди них наиболее важным является хром. [c.453]

    Электроннолучевой нагрев. В последние годы резко возросла потребность в металлах и сплавах, ранее почти не применявшихся или применявшихся в незначительных количествах. К таким металлам относятся уран, цирконий, ниобий, тантал, вольфрам и др., которые используются в условиях исключительно высоких статических и динамических нагрузок при очень высоких температурах. В свою очередь свойства указанных металлов находятся в прямой зависимости от содержания в пих примесей, особенно кислорода, водорода и азота. Обеспечить получение ультрачистых металлов можно, лишь производя операции выплавки и горячей деформации в условиях глубокого вакуума. Наиболее эффективно указанные операции можно производить с помощью электроннолучевого нагрева, принцип которого состоит в следующем. [c.32]

    До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий. [c.251]

    К побочной подгруппе элементов VI группы относятся металлы хром, молибден, вольфрам, раньше к этой группе относили элемент уран, который в настоящее время причисляется к актинидам. Все они имеют очень важное значение уран как радиоактивный элемент, остальные — как металлы, применяющиеся в технике для получения различных сплавов. Среди них наиболее важным является хром. [c.445]

    Новые задачи в деле борьбы с коррозией возникают не только в связи с усложнением условий службы металла. Это связано и с тем, что номенклатура и число широко применяемых металлов с ходом технического прогресса сильно возрастают. Если на заре человеческой культуры применялись чаще благородные металлы золото, медь (бронза), олово, свинец и лишь ограниченно железо, то позднее основное распространение получают менее благородные, железные сплавы. В настоящее время наиболее важное значение имеют сплавы на основе железа (сталь, чугун). Одновременно с этим самое широкое применение находят сплавы алюминия, магния, по природе своей гораздо менее устойчивые к коррозии. Дальнейшие запросы техники выдвигают проблему практического использования, а значит, и защиты от коррозии таких металлов, как титан, цирконий, вольфрам, молибден, германий, индий, рений, уран, торий и ряд других. Наконец, всеобъемлющее значение приобретает борьба с коррозией вследствие непрерывного и все более бурно увеличивающегося из года в год общего запаса металлических материалов в виде эксплуатирующихся человечеством металлических конструкций. [c.10]

    Хром является представителем побочной подгруппы шестой группы периодической системы. Главная подгруппа шестой группы, как мы уже знаем, состоит из элементов, являющихся типичными металлоидами. В побочной подгруппе находятся элементы четных рядов, т. е. первых половин больших периодов, атомы которых характеризуются недостроенными предпоследними энергетическими уровнями. Поэтому у всех элементов побочной подгруппы, на внешнем электронном слое аюмов находится не более двух электронов-что и обусловливает их металлические свойства. Эти элементы не дают отрицательных ионов, поскольку они но могут присоединять электронов, подобно элементам главной подгруппы. В этом их коренное отличие. Отдавать электроны атомы элементов побочной группы могут не только с внешнего слоя, но и с предпоследнего недостроенного слоя, который содержит 12 электронов (у хрома 13). Таким образом, при химическом взаимодействии у атомов этих элементов принимают участие 2 электронных слоя внешний и предпоследний. Общее количество электронов, которые они могут отдать, равно шести. В этом проявляется их сходство с элементами главной подгруппы. К побочной подгруппе элементов шестой группы относятся металлы хром, молибден, вольфрам и уран. Все они имеют очень важпое значение уран как радиоактивный элемент, остальные как металлы, применяющиеся в технике для получения различных сплавов. Среди них наиболее важным является хром. [c.263]


    Много органических реактивов было также снова исследовано при совместном их действии с комплексонами. Уже известное определение урана 8-оксихинолином (стр. 157) было успешно применено при анализе сплавов урана с висмутом [45]. В щелочном растворе в присутствии комплексона уран количественно выделяется оксином. Затем, подкисляя фильтрат, выделяют количественно висмут в виде оксихинолята. Весовое определение алюминия оксином в растворе комплексона, цианида калия и тартрата следует считать высоксселективным [46], поскольку оно позволяет определять алюминий в присутствии целого ряда элементов, в том числе и железа. Этот метод был использован для анализа сплавов алюминия с медью. Оксиновый метод определения вольфрама (стр. 159) был практически использован для анализа смеси вольфрама и тория [47]. В аликвотной части раствора определяют вольфрам осаждением оксихинолином с последующим йодометрическим титрованием. В другой части раствора можно определить торий прямым титрованием комплексоном при одновременном Маскировании вольфрама перекисью водорода. [c.540]

    Определение ликвидуса до 2400° в системе уран—вольфрам и до 2000° в системе уран—тантал описано Шраммом, Гордоном и Кауфманом [41]. В первом случае уран расплавляли в вол1ьфрамовом тигле и выдерживали при определенной температуре в течение времени, достаточного для того, чтобы обеспечить равновесное растворение вольфрама в уране. Расплавление проводилось в индукционной печи, показанной на рис. 50. После того как металл застывал, тигель отделяли от полученного таким образом образца сплава и поверхность образца зачищали. Затем слиток подвергали химическому анализу для установления состава ликвидуса при данной температуре. [c.183]

    Хром, молибден и вольфрам потребляются в сталелитейной промышленности, в производстве специальных сплавов (высокотвердых, тугоплавких, кислотоупорных). Уран — это ядерное горючее. [c.265]

    Из всех известных в настоящее время металлов больще половины можно О саждать на другие металлы электролитическим способом. Практически осуществляют гальваиичеекие покрытия не менее чем 10— 15 металлами, в том числе больше всего цинком, никелем, медью, хромом, оловом, кадмием, свинцом, серебром и железом. Менее распространены покрытия платиной, родием, палладием, кобальтом, марганцем , мышьяком, индием, ртутью. Покрытия такими металлами, как галлий, нио бий, вольфрам, молибден и рений, в гальванической практике широкого применения не имеют. За последнее время были о саждены электролитически такие виды металлов, как уран, плутоний, актиний, полоний, цезий, торий, а также германий. Получили значительное практическое применение различные тюирытия сплавами, в том числе сплавами олово-цинк, олово-никель, олово-свинец, никель-кобальт, золото-медь и другими. Почти все применяемые виды покрытий можно разбить по их назначению на следующие группы защитные, защитно-декоративные к специальные покрытия. [c.11]

    Ври 42O—55O °С и давлении газа выше 10 МПа с ислользованием катализатора на основе железа. Кроме железа, при синтезе аммиака могут быть использованы -вольфрам, осмий, никель, уран, молибден, марганец и другие дорогостояпще металлы и их сплавы. В промышленности применяют промотированные железные катализаторы. [c.160]

    Фтористый водород реагируег со многими окисями и гидроокисями с образованием воды и фторидов. Наиболее характерными в этом отношении являются соединения щелочных и щелочноземельных металлов, серебра, олова, цинка, ртути и железа. С болое термоустойчивыми окисями, например окисью алюминия, фтористый водород реагирует медленно или только при высокой температуре. С хлоридами, бромидами и иодидами этих элементов, а также таких элементов, как сурьма и мышьяк, фтористый водород реагирует весьма бурно с выделением соответствующего галоидоводорода. С цианидами НР реагирует с выделением цианистого водорода, а с фторосиликатами— с выделением тетрафторида кремния. С силикатами он дает поду и тетрафторид кремния. С окисями таких элементов, как фосфор, вольфрам, уран и сера, реакция идет с образованием оксифторидов или фторкислот. В зависимости, , от термоустойчивости исходных веществ или продуктов реакции, а также от температуры реакции фтористый водород может реагировать с веществами, содержащими отрицательные элементы или отрицательные группы. Он реагирует со всеми металлами, расположенными ниже водорода в ряду напряжений, за исключением тех, которые образуют защитные пленки из тугоплавких фторидов. К таким металлам относятся алюминий и магний и особенно железо и никель. Медь расположена в ряду напряжений ниже водорода. Поэтому в отсутствие кислорода и других окислителей фтористый водород на нее не действует, но в присутствии кислорода медь очень быстро корродируется. Некоторые сплавы, например монель-металл, прекрасно противостоят НР, но нержавеющая сталь легко корродируется. Железо и сталь по сравнению с нержавеющей сталью значительно более устойчивы. Свинец при действии фтористого водорода быстро разрушается. [c.212]


Смотреть страницы где упоминается термин Вольфрам, сплав с ураном: [c.210]    [c.280]    [c.534]    [c.159]    [c.202]    [c.349]   
Технология производства урана (1961) -- [ c.360 , c.444 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам сплавы

Уран от вольфрама



© 2024 chem21.info Реклама на сайте