Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление железом

Рис. 40. Влияние концентрации азотной кислоты на характер продуктов ее восстановления железом Рис. 40. Влияние <a href="/info/473711">концентрации азотной кислоты</a> на характер продуктов ее восстановления железом

    В промышленности для получения анилина из нитробензола используют восстановление железом в хлороводородной кислоте  [c.410]

    Подсчитать количество электроэнергии, потребной для выплавки 1 т чугуна в электропечи, если принять а) реакция восстановления железа в печи протекает по схеме  [c.391]

    Как функционирует молекула цитохрома с, пока еще неизвестно. Структура ее варианта с железом(1П) была определена только в 1969 г. методом дифракции рентгеновских лучей, а структура варианта с восстановленным железом(П)-в 1971 г. Лиганды в комплексе вокруг железа и компактная структура всего белка изменяют окислительно-восстановительную химию атома железа и обеспечивают связь окислительных и восстановительных процессов с предыдущими и последующими звеньями цепи терминального окисления. [c.259]

    Если оформление стадии крекинга достаточно однотипно, то варианты использования закоксованного железоокисного катализатора после отделения от продуктов реакции существенно различаются в зависимости от назначения процесса и типа катализатора. В случае применения железной руды возможно получение восстановленного железа за счет отложившегося кокса в специальной вращающейся печи [3.11] или в псевдоожиженном слое в среде восстанавливающего агента [3.12]. Однако отсутствие рециркуляции катализатора потребует специального подогрева свежего катализатора до высоких температур [3.11]. Более рациональным является подогрев части или всего катализатора за счет выжигания отложившегося кокса в регенераторе по аналогии с процессом каталитического крекинга [3.7, 3.10]. [c.61]

    Процесс проводят при давлении 0,6—0,8 атм, при температуре 800—900° С. Природный газ, пар и воздух тщательно смешивают и подогревают. Пар и воздух — до 600 С, а природный газ — до 100— 120 С. Смесь перед поступлением в слой катализатора подогревают до 900° С. Катализатор загружают в реактор с шарами из жаропрочной стали (для обеспечения равномерности распределения температуры в слое катализатора). Избыток воздуха и пара препятствует образованию сажи в зоне конверсии, но чрезмерно увеличивает содержание двуокиси углерода и водяного пара в конвертированном газе. Поэтому в конвертированный газ (перед подачей его в реактор прямого восстановления железа) подают 10% подогретого природного газа. При наличии металлического железа и температуре 850—900 С происходит конверсия природного газа. Образовавшаяся при этом сажа ускоряет процесс восстановления железа [c.107]

    Для восстановления железа иногда пользуются сероводородом  [c.366]

    Г аз конверсии используют для прямого восстановления железа [c.107]

    Технологический процесс переработки железной руды, угля, известняка и углеводородных топлив в конечный продукт может быть разбит на 3—4 основные стадии, которые осуществляются раздельно с получением определенного продукта, на следующей стадии перерабатываемого в продукт нового вида. Различные стадии процесса могут проходить в одной технологической установке. Это будет способствовать не только экономии энергии и расходов на транспортировку, но и упрощению технологического процесса. Основные технологические стадии при производстве чугуна и стали следующие подготовка сырья (коксование угля, обжиг известняка, производство железорудного агломерата и окатышей) производство чугуна (доменная выплавка, производство губчатого чугуна за счет прямого восстановления железа) стали (в мартеновских и электродуговых печах, бессемеровских и основных кислородных конвертерах) проката (непрерывное литье заготовок, прокатка сортовой стали, производство труб, поковки). [c.303]


    Муассан и Муре повторили опыт Вертело и показали, что уже при обыкновенной температуре ацетилен поглощается (с выделением тепла), свеже восстановленный железом никелем и кобальтом . [c.249]

    Для восстановления железо(П1) -> железо(П) требуется по одному электрону (е ) на атом, поэтому всего потребуется 0,300 моля е , или 0,300 F. [c.481]

    В виде приложения качественных методов рассмотрена математическая модель химического восстановления железа из оксидов [8-9]. [c.17]

    Возможность расчетов в широкой области параметров позволила найти технологически оптимальный режим для процесса восстановления железа из его оксидов. [c.17]

    В присутствии соединений кислорода скорости как окисления, так и восстановления железа являются значительными. Повторные окисление и восстановление железа, возможно, происходят как один непрерывный процесс, во время которого железо может спекаться. Скорость спекания возрастает с увеличением концентрации Н О, особенно при повышенных температурах. Увеличение размера кристаллов железа — необратимый процесс, в результате которого происходит постоянное уменьшение поверхности и активности железа. [c.164]

    Расчет изобарно-изотермического потенциала реакций восстановления кремния и марганца по значениям AG соответствующих оксидов (табл 4.1) показывает, что они составляют, соответственно, +61 и -31 кДж, а для реакции восстановления железа из FeO -1-109 кДж. Поэтому, прямому восстановлению подвергаются, в первую очередь, кремний и марганец. [c.66]

    Какие процессы называются процессами прямого восстановления железа  [c.106]

    Вращающаяся печь (восстановление железа) Размол и просеивание [c.425]

    Основной недостаток процесса прямого восстановления железа — зависимость от определенных, главным образом относительно богатых сортов железных руд. Это обстоятельство снижает его конкурентоспособность по отношению к доменному процессу. Возможность увеличения производства чугуна за счет вдувания углеводородов в доменную печь также снижает уровень эффективности методов прямого восстановления. [c.306]

    При получении порошкообразного железа следует помнить, что восстановленное железо обладает пирофорными свойствами. Перед выгрузкой на воздух оно должно быть пассивировано путем поверхностного окисления порошка небольшими порциями воздуха или в растворе щелочи. При получении металлического порошка поддерживается температура около 500 °С. Выше 500 °С наблюдается заметная рекристаллизация железа и снижение активности массы. [c.97]

    При попытках предсказать, как будут использоваться обычные виды топлива в черной металлургии, следует учитывать ожидаемые изменения в технологии и конструкциях установок. Они могут быть самыми разнообразными увеличение размеров технологических агрегатов, повышение термического к. п. д. доменных печей (как в Японии) внедрение метода прямого восстановления железа [c.311]

    В ближайшие 10—15 лет газ может найти широкое применение в черной металлургии (табл. 61). Надежность прогноза всегда снижается из-за неопределенности ряда факторов экономического положения производителя стали, использующего более дешевые и более богатые руды подъема экономики после спада с соответствующим ростом потребности в стали степени развития технологии и масштабов роста производства стали из скрапа, снижающих потребность в рудном сырье для доменного процесса времени, необходимого для вытеснения доменного процесса методом прямого восстановления железа ресурсов и цен на конкурирующие виды топлива (природный газ, нефть, кокс, уголь) выделения заводов для производства специальных сталей из состава заводов полного металлургического цикла и передачи их в руки независимых производителей. [c.312]

    После того как четыреххлористый углерод стал легко доступным продуктом, был разработан способ его частичного восстановления железом и серной кислотой до хлороформа  [c.229]

    Реакция распространяется в глубину частиц активного вещества не так легко, как при окислении железа в процессе разряда. Поэтому при осуществлении циклов заряд — разряд коэффициент использования железа в реакции токообразования определяется степенью восстановления железа в поверхностных слоях частиц активного вещества. Преждевременному прекращению заряда способствует недостаточная концентрация щелочи и низкая температура, Большое значение имеют также дисперсность и структура [c.87]

    Сырокомский и Жукова предложили для предварительного восстановления железа применять соединения двухвалентного хрома, которые являются очень сильными восстановителями (для реакции Сг =Сг + величина = —0,4 в). [c.367]

    Применение двухвалентного хрома в качестве восстановителя имеет тот недостаток, что растворы солей хрома (двух- и трехвалентного) довольно сильно окрашены поэтому трудно определить полноту восстановления железа, а также точку эквивалентности при титровании железа. [c.367]

    Хорошие результаты получаются также при использовании различных редукторов (см. 100 и 109). В этом случае необходимо иметь в виду, что во многих природных материалах наряду с железом содержится титан. При отсутствии титана можно пользоваться цинковым, кадмиевым и другими редукторами. Однако большинством металлов восстанавливается также титан. Поэтому в присутствии титана для восстановления железа необходимо пользоваться металлом, который имеет окислительный потенциал меньший, чем железо, но больший, чем титан (при переходе в трехвалентный). Наиболее доступным и достаточно изученным восстановителем для этой цели является металлический висмут. [c.380]


    Менее точным, но весьма распространенным является описанный ниже метод, основанный на восстановлении железа двухлористым оловом, после чего избыток ЗпС окисляют сулемой, а двухвалентное железо титруют раствором КМпО или КаСг О,. Метод был разработан для анализа железных руд, которые трудно растворяются в различных кислотах, но довольно быстро переходят в раствор при нагревании с соляной кислотой и двухлористым оловом. Это значительно ускоряет анализ и дает возможность в ряде случаев обойтись без сплавления. В других случаях, например при анализе алюминиевых и других сплавов, содержащих железо, а также при анализе силикатных материалов (глин, бокситов и др.), значительно удобнее пользоваться другими способами определения железа, которые дают более точные результаты. Подробнее рассмотрим метод, основанный на восстановлении железа двухлористым оловом. [c.380]

    Для того чтобы легко было установить тот момент, когда прибавлено достаточное количество двухлористого олова, раствор хлорного железа перед восстановлением нагревают почти до кипения. Это приводит к значительному усилению интенсивности желтой окраски вследствие уменьшения диссоциации хлоридного комплекса железа. Признаком полноты восстановления железа является исчезновение желтой окраски раствора обесцвечивание горячего раствора от прибавления избытка 1—2 капель раствора двухлористого олова хорошо заметно. [c.381]

    X P jr- Андерсон [2] констатирует, что этот график ... демонстрирует полную пригодность уравнения скорости, особенно если учесть до-нольно большие экспериментальные погрешности. Кромо того, ураинение удсзвлетворительно предсказывает измененне скорости при измепении об-щс го давления и состава газа. . . Может быть полезно рассмотреть посту-лачы, на основе которых могло быть выве.дено уравнение ск(- рости. Эти постулаты таковы во-первых, скорость реакции пропорциональна парциальному давлению водорода и доле восстановленного железа в реакционной зоне и, во-вторых, доля восстановленного железа определяется парциальными давлениями водяного пара и окиси углерода . Эти постулаты представляются логичными, если принять, что лимитируюш ей стадией реакции является образование комплекса , состоящего из хемосорбированных окиси углерода и водорода, который может реагировать с соседним аналогичным комплексом или с хемосорбированной молекулой спирта или олефииа. Этот комплекс может иметь природу гидро-карбонила железа, и его образованию может предшествовать образование карбонила железа на поверхности катализатора. [c.522]

    Акти]июсть и стабильность промотированных щелочью железных катализаторов при работе ниже 7 ат можно повысить путем предварительной обработки окисью углерода с образованием карбидов железа (Хэгга и гексагонального) [2, 27g]. Благоприятный эффект предварительного карбр1Дйрования железных катализаторов, по-видимому, непосредственно связан со значительным уменьшением скорости окисления FejG водяными парами по сравнению со скоростью окисления Fe. При проведении синтеза под давлением выше 7 ат ьсе карбиды (Хэгга, гексагональный и цементит) окисляются быстрее восстановленного железа. Этот процесс сопровождается быстрым падением активности (см. рис. 2). Предварительное карбидирование кобальтовых катализаторов резко снижает их активность. Кобальтовые катализаторы по сравнению с не-карбидированными железными очень медленно окисляются водяными парами в условиях синтеза. [c.522]

    Как известно, присутствие различных механических примесей в метано-кислородной смеси может вызвать ее самовоспламенение и при более низкой температуре. Так, по данным А. Ласло самовоспламенение рассматриваемых смесей в присутствии сажи наблюдалось при 340 °С. Окалина (Ре20з), попадая из коммуникаций в метано-кислородную смесь, вызывает значительное снижение температуры самовоспламенения этой смеси. При 400—600°С в атмосфере природного газа РегОэ восстанавливается до Fe. Восстановленное железо в зоне смешения взаимодействует с кислородом  [c.54]

    На практие вертикальные поверхности в псевдоожиженном слое могут сочетаться с горизонтальными V . В качестве примеров промышленных процессов, где используются вертикальные вставки, можно привести синтез из окиси углерода и водорода , производства технологических газов Хайдрокол-процесс и восстановление железа [c.538]

    Оставшаяся негазифицированная часть угля, которая представляет собой достаточно реакционноспособную форму обожженного угля, выводится со стороны поддона и направляется в генератор водорода. Последний работает в обычном режиме подачи парокислородной смеси в псевдоожиженный слой обожженного угля при отсутствии кислорода работа генератора возможна и на одном паре, однако в этом случае необходим электронагрев слоя. Действующая в исследовательском центре Института Газовой Технологии установка работает именно в этом варианте. Исследуется третий возможный метод производства водорода, основанный на взаимодействии пара с железом и последующем восстановлении железа обожженным углем. [c.162]

    Выбор способа восстановления и использования катализатора зависит от его структуры и от действия ядов. Во время восстановления железо, образовавшееся в одной части катализатора, не должно подвергаться действию воды, получаюш ейся при восстановлении других частей катализатора. Этого нельзя избежать в отдельной грануле, поскольку железо, образовавшееся на ее поверхности, подвергается воздействию воды, образуюш,ейся в результате восстановления внутри гранулы. Вследствие этого более крупные гранулы катализатора имеют тенденцию к более низкой удельной активности, чем более мелкие гранулы катализатора, которые во время восстановления в меньшей степени подвергаются действию воды. (Более мелкие частицы также реакционноспособнее, поскольку, как это обсуждается далее, они в меньшей степени подвержены влиянию газовой диффузии.) Во время восстановления в слое катализатора вода, получившаяся от восстановления нижних частей слоя (на выходе), не должта вступать в контакт с верхним слоем восстановленного катализатора (на входе) в результате обратной диффузии или смешения. При рециркуляции газа — восстановителя необходимо удалять воду из выходяш,его газа путем его охлаждения в рецикле. [c.165]

    Топливо обеспечивает создание в печи высоких температур, ирп6упдстмт.ту д тгя прптекяттия реакций восстановления оксидов железа, образование оксида углерода (П) и водорода, йв-ляющихся газообразными восстановителями, диффузию углерода в восстановленное железо и образование чугуна. В качестве топлива используется преимущественно каменноугольный кокс и, для снижения его расхода, добавки газообразного (природный и коксовый газы), жидкого (мазут) и аэрозольного (угольная пыль) топлив. Доменный кокс должен обладать высокой прочностью, сопротивлением к истиранию, не спекаться в условиях доменного процесса и содержать минимальные количества золы, серы и фосфора. Так, например, повышение содержания серы в коксе на 1 % увеличивает расход кокса на 10% и снижает производительность печи на 20%. Обычно, в металлургическом коксе содержится золы 8—12%, серы 0,5—2,0% и фосфора до 0,5%. [c.54]

    Наиболее распространен в технике метод восстановления нитросоединений железом в присутствии электролитов (РеСЬ, ЫН4С1, МаС1 и т. д.), применяемый при производстве анилина. Восстановление протекает в основном за счет железа и воды, а хлорид железа является здесь лишь катализатором. Перед восстановлением железо подвергают травлению разбавленными кислотами для введения электролита (РеСЦ) в водную среду. В присутствии электролитов железо становится более активным вследствие усиления его влажной коррозии. Для проведения реакции берут соляной кислоты не более чем 2—3% от необходимого по стехиометрическому расчету  [c.145]

    После восстановления железа с помощью висмутового редуктора раствор титруют раствором КМпО или КгСг О,. [c.380]

    В полученном солянокислом растворе непосредственно определяют железо. Очень редко приходится иметь дело с мешающими элементами и устранять их влияние. К таким элементам относятся ванадий, молибден и вольфрам, которые иногда могут находиться в незначительном количестве в железной руде. При восстановлении железа двухлористьш оловом эти элементы также восстанавливаются до низших степеней окисления и затем титруются перманганатом. В случае их присутствия анализ усложняется и для определения железа приходится пользоваться другими методами или вводить ряд дополнительных операций, которые подробно рассматриваются в специальных курсах анализа. [c.382]

    Для восстановления железа следует применять висмутовый редуктор или висмутовую амальгаму,так как в растворе присутствует титан более энергичные воссано-вители (кадмий, цинк) восстанавливают не только железо, но также титан. При йодометрическом определении железа, а также прп восстановлении хлористым оловом, присутствие титана не имеет значения. [c.467]

    На катоде при содержаниях серы 0,4—0,8 % (по массе) образуется пленка из оксида п сульфида магния, препятствующая образованию крупных корольков магния и повышающая перенапряжение на катоде. Выход по току прн этом снижается. Соли железа, попадающие н электролит, также уменьшают выход по току. Происходит процесс восстановления ионов железа ме-тал, жческим магнием и его субхлоридом. Кристаллы восстановленного железа увлекают капли магния в шлам п способствуют образованию на катоде пленки из оксида магния и частиц железа, не смачиваемой магнием, что в. течет за собой также потери металла. [c.145]


Смотреть страницы где упоминается термин Восстановление железом: [c.66]    [c.97]    [c.140]    [c.312]    [c.270]    [c.150]    [c.353]    [c.369]    [c.369]   
Смотреть главы в:

Непредельные нитросоединения Издание 2 -> Восстановление железом


Препаративная органическая химия (1959) -- [ c.496 ]

Препаративная органическая химия (1959) -- [ c.496 ]

Лабораторный практикум по промежуточным продуктам и красителям (1965) -- [ c.42 , c.61 ]

Лабораторный практикум по промежуточным продуктам и красителям (1961) -- [ c.49 ]

Лабораторный практикум по промежуточным продуктам и красителям Издание 2 (1965) -- [ c.42 , c.61 ]




ПОИСК







© 2024 chem21.info Реклама на сайте