Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инфракрасная спектроскопия колебания, активные в спектре

    Инфракрасная спектроскопия. Обычно метод инфракрасной спектроскопии применяется для идентификации молекул по характеристическим частотам колебаний групп атомов. Чтобы колебание было активным в ИК-области спектра, оно должно включать изменение дипольного момента, поэтому двухатомные молекулы типа СЬ и симметричные молекулы типа СО2 неактивны в ИК-области. На характеристические частоты отдельных групп оказывает влияние окружение. Например, согласно концепции резонанса карбонильная группа СО имеет две канонические формы  [c.128]


    В процессе симметричного валентного колебания молекула претерпевает растяжение или сжатие, при этом электронная плотность в элементе объема изменяется, и по этой причине изменяется поляризуемость. Неизменным остается дипольный момент. Вот почему такие колебания следует наблюдать в спектре комбинационного рассеяния [см. уравнение (5.3.13)], но не в инфракрасном [см. уравнение (5.3.12)]. Для антисимметричных валентных колебаний складываются обратные соотношения. Для молекул с центром симметрии имеется правило альтернативного запрета, по которому колебание может быть активным только в инфракрасных спектрах или в спектрах комбинационного рассеяния. Из этого следует необходимость комбинирования методов инфракрасной спектроскопии и спектроскопии комбинационного рассеяния при изучении колебательных спектров молекул. [c.222]

    Плиев Т. Н. Закономерности в частотах ножничных деформационных колебаний метиленовых групп в инфракрасных спектрах полимеров, органических и биологически активных соединений. Журнал прикладной спектроскопии. 1999, т. 66, № 6, с. 862. [c.109]

    Для дальнейшего прогресса молекулярной спектроскопии актуальное значение имеют закономерности в характеристических частотах инфракрасных спектров и в характеристических химических сдвигах протонов спекторов ЯМР органических соединений. В этом отношении большой интерес представляют характеристические частоты ножничных деформационных колебаний активных метиленовых групп. [c.88]

    Однако с помощью инфракрасной спектроскопии были изучены равновесия цианидных комплексов меди(1) [121] и серебра [82] в водном растворе. Полосы, обусловленные связью появлялись между 2076 и 2135 сж" как для свободных цианид-ионов, так и для различных комплексов и были четкими даже в водных растворах. По-видимому, в каждом случае закон Бера был справедлив при частоте асимметричных колебаний, и концентрацию комплекса можно определить с точностью 5%. Поэтому получающиеся значения Кз и были только приближенными, и так как концентрация цианид-ионов сильно изменялась, то дальнейщие неточности были введены из-за поправок на коэффициенты активности. Подобное исследование диссоциации фенола в водных растворах также дало лищь приближенное значение константы устойчивости [119]. Однако, если располагать лучшими методами получения инфракрасных спектров в водных растворах, возможно, что инфракрасная спектроскопия станет удобным средством изучения равновесия в водном растворе. [c.343]


    Если молекула имеет некоторые элементы симметрии, число отдельных колебаний, которые могут наблюдаться, будет в общем меньше ЗЛ" — 6 (или ЗЛ — 5 для линейной молекулы). Если необходимо провести полное рассмотрение эффектов симметрии, можно обратиться к одной из обычных книг но инфракрасной спектроскопии [21, 49]. Коротко же говоря, симметрия часто выражается спектрально в том, что появляются два или три вырожденных колебания, т. е. имеющих одну и ту же частоту. Другой результат наличия симметрии состоит в том, что некоторые ко.лебания не сопровождаются изменением дипольного момента и поэтому они не активны в инфракрасном спектре. Из относительно простого рассмотрения, представленного в обычных монографиях, вырождение колебаний и число колебаний, активных в инфракрасном спектре, спектре комбинационного рассеяния и полностью неактивных, можно предсказать для любой молекулы. Когда геометрия молекулы известна, могут быть составлены уравнения, связывающие силовые постоянные и массы атомов с колебательными частотами. Если известны силовые постоянные, относительно легко рассчитать колебательные частоты. Однако обратная задача расчета силовых постоянных из наблюдаемых частот намного более с.ложна. Желательно рассчитывать силовые постоянные, поскольку они характеризуют св011ства отдельных связей, тогда как колебательные частоты в силу того, что нормальные колебания охватывают все атомы молекулы, претерпевающие синхронное движение, отражают более или менее молекулярные свойства. Практически при определенных условиях некоторые частоты можно принять в качестве характеристических для отдельных связей независимо от составной части молекулы. Этот факт является основой применения инфракрасных спектров для функционального группового анализа и будет рассмотрен более полно в разд. И, 2,А. [c.325]

    В последнее время широко распространилось определение строения сложных неорганических молекул при помощи инфракрасных спектров. Наблюдаемый спектр сравнивают со спектром, рассчитанным для принятой модели с применением математически (на основании теории групп) выведенных правил отбора (т. е. это метод проб и ошибок, ср. с разд. 6.1—6.3). Метод инфракрасной спектроскопии применяли, в частности, для определения строения гидридов бора (разд. 2.5), окислов азота, межгалогенных соединений, изомеров координационных соединений и карбонилов металлов. Так, инфракрасный спектр диборана (ВгНб) состоит из восьми полос, причем все они, по-видимому, основные. Если в структуре имеются мостиковые атомы водорода, то правила отбора предсказывают восемь частот колебаний, активных в инфракрасной области. Аналогичные исследования подтвердили, что в некоторых полиядерных карбонилах имеется два типа групп СО концевые карбонильные группы, поглощающие примерно при 2000 и мостиковые карбонильные группы, которые поглощают при ---1800 сж" . На этом основании Ре2(С0)э — карбонил такого типа — имеет структуру, приведенную на рис. 6.17. [c.213]

    Простейшее четырехчленное циклическое соединение — окись триметилена — детально изучалось с помощью микроволновых методов главным образом Чаном, Гвинном и сотр. (1966). Длинноволновые инфракрасные спектры молекулы в газовой фазе также исследовались неоднократно, в частности группой Лорда (см., например, Дюриг и Лорд, 1966). Наибольший интерес представляют неплоское ( вспучивающее ) колебание кольца, активное в ИК-спектре, и форма его потенциальной кривой. Для решения этого вопроса необходимо совместное применение микроволновой и длинноволновой инфракрасной спектроскопии. [c.213]

    Подобный вывод не представляется особенно далеко идущим. В физике твердого тела является обычным прием разложения колебаний высокосимметричных частиц (молекул или молекулярных ионов) на набор фундаментальных колебаний, большинство из которых понижает симметрию частиц зачастую ниже симметрии локального положения. Вся разница заключается лишь в частоте процесса. Обычно рассматривающиеся колебания относятся к инфракрасной области (10 —10 Гц), в то время как в вашем случае приходится вводить предположение об ульт-ранизких частотах —10 Гц и ниже. Поэтому методы исследования, чувствительные к интегральному распределению частиц в структуре, например дифракционные, должны по-прежнему приводить к результирующей высокой симметрии. И, наоборот, ЯМР, ИК-спектроскопия и другие методы в силу своей специфики должны фиксировать мгновенную картину искаженных комплексов. Данные ЯМР мы уже рассмотрели, здесь уместно отметить лишь факт наличия соответствующих расщеплений в ИК-спектрах. Для симметричных октаэдрических комплексов в ИК-спектре активны два фундаментальных колебания симметрии (частоты вблизи 250 и 500 см ). Понижение симметрии октаэдра с 0 до D f приводит к появлению пяти активных в ИК-спектре частот, что расщепляет каждую из двух исходных линий на две-три компоненты. Полученные на ИК-спектрометре иИ-10 спектры представлены на рис. 21. Как видно, в большинстве случаев расщепления весьма малы, вплоть до проявления в виде асимметрии линий ИК-поглощения (для К2М1Ре), что подтверждает малую величину искажения. [c.41]



Смотреть страницы где упоминается термин Инфракрасная спектроскопия колебания, активные в спектре: [c.9]    [c.510]    [c.72]    [c.312]   
Физические методы в неорганической химии (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Активные колебания

Инфракрасная спектроскопи

Спектроскопия инфракрасная

спектроскопия спектры



© 2024 chem21.info Реклама на сайте