Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резонанс, концепция

    В некоторых случаях, без учета резонанса структур, в рамках метода ВС может получаться качественно неправильное описание электронной структуры молекулы. Так, для бензола ни одна из двух классических формул Кекуле не отражает реальной симметрии молекулы, а также ее физических и химических свойств. Другой пример — диоксид углерода СО2. Длина связи углерод — кислород в нем равна 0,115 нм, тогда как длина нормальной двойной связи С=0 (в кетонах) равна 0,122 нм, а расчетная длина тройной связи С = 0 — 0,110 нм. Т. е. связь углерод — кислород в СО2 оказалась промежуточной между двойной и тройной, что можно объяснить в терминах концепции резонанса  [c.169]


    Ее слагаемые соответствуют структурам I, П и HI, поэтому использование в расчетах функции означает одновременный учет всех этих валентных схем, а действительное электронное состояние молекулы представляет собой наложение, резонансный гибрид, указанных структур. Концепция резонанса очень полезна при условии ее правильного истолкования. Важно, однако, помнить, что резонанс представляет собой фиктивное понятие подсобного характера. Оно возникает как следствие построения волновой функции в одном из приближенных квантовомеханических методов — методе ВС. При использовании другого подхода, как, например, в методе МО, необходимость в резонансе отпадает. [c.177]

    Важно отдавать себе отчет в том, что резонанс в некотором смысле фиктивное понятие. Оно возникает как следствие построения начальной волновой функции, и его существование есть продукт квантовомеханической модели, использованной для описания системы. Поскольку применяют теорию валентных связей, постольку существует и представление о резонансе, так как оно лежит в основе этой теории. Однако для другой, не менее хорошей модели оно не будет иметь смысла, а следовательно, не будет иметь право на существование. То же самое относится, разумеется, и к некоторым другим научным концепциям. В теории валентных связей резонанс существует, и можно считать себя вправе говорить о нем как о существующем. Но в свете других моделей можно отрицать его существование. [c.164]

    Пожалуй, ни одна квантовохимическая концепция не вызывала столь острой дискуссии, как концепция резонанса. Основной вопрос этих дискуссий состоял в следующем можно ли отдельным резонансным структурам сопоставить реальное химическое соединение Не происходят ли постоянные быстрые самопроизвольные переходы от одного соединения, описываемого одной резонансной структурой, к другому, отвечающему другой такой структуре Сейчас ка.  [c.166]

    По теории валентной связи другим фактором, влияющим на устойчивость молекул, является резонанс. Концепцию резонанса можно выразить следующим образом если для некоторого вещества можно написать более чем одну структуру, удовлетворяющую определенным условиям, действительная структура должна быть промежуточной и более стабильной. Условия заключаются в том, что в различных структурах не должны значительно изменяться межатомные расстояния и число неспаренных электронов. Концепция резонанса была предложена для объяснения тех же эффектов, что и делокализация электрона в методе молекулярных орбиталей. Хотя описательное значение теории валентной связи в комплексах весьма велико, ее предсказательные возможности ограничены. Теория молекулярных орбиталей, хотя и менее проста для понимания, обладает большей гибкостью и более перспективна для количественных расчетов. [c.39]


    Заметим, что ни одна из резонансных структур сама по себе не отвечает реально существующему состоянию молекулы и не передает ее истинного строения. Развитая в рамках метода ВС концепция резонанса заменила классическое представление молекулы одной структурной формулой набором схем спаривания, дающим более полное и правильное представление о распределении электронной плотности. [c.166]

    Ниже не будет обсуждаться применение метода валентных связей для предсказания и описания структур молекул, так как это уже было сделано в гл. 5 для простых соединений непереходных элементов и будет сделано в гл. 7 для комплексных соединений переходных элементов. Однако будет показано, что конфигурации молекул могут быть объяснены с помощью более простых теорий, чем метод валентных связей. Кроме того, будет отмечено, что для метода валентных связей концепции о гибридизации, резонансе п обмене являются просто удобными математическими описаниями, но они не дают объяснений истинным причинам явлений, которые [c.198]

    И получил очень хорошее согласие данных теории и опыта. Эта функция вызывает особый интерес, так как не основана на методе ЛКАО и нет необходимости в концепции о резонансе. [c.153]

    Концепция химического резонанса как способ описания сопряженных молекул в методе ВС [c.56]

    Лайнус Карл Полинг (род. 1901 г.) — выдающийся американский химик, один из немногих ученых, которому была дважды присуждена Нобелевская премия (1954 г. — по химии, 1962 г. — премия Мира). В 1970 г. Л. Полингу была присуждена Ленинская премия за укрепление мира между народами. Один из создателей метода ВС, теории гибридизации, концепции резонанса, электроотрицательности и др. Внес огромный вклад в создание молекулярной биологии (спиральное строение полипептидной цепи, существование гемоглобина 8 и т. д.). На русский язык переведены его книги Не бывать войне , Природа химической связи , Общая химия и др. [c.137]

    Часто используемая для иллюстрации концепции резонанса аналогия с маятником создала довольно распространенное ложное представление о том, что резонанс — это быстрое чередование ряда крайних структур. Существенно более удачная аналогия — это приоткрытая дверь, которая находится неподвижно в промежуточном положении и имеет в известной степени свойства открытой и полностью закрытой двери (но не быстро качающейся между крайними положениями). [c.22]

    Для многих молекул можно принять простую структурную формулу с валентными (Связями, которая удовлетворительно объясняет свойства данного вещества (примеры 6.8 и 6.9). Однако существуют молекулы, например молекула озона Оз, для которых единственная структура оказывается недостаточной. Было установлено, что для удовлетворительного описания таких молекул необходимо использовать две или даже несколько валентных структур. Эта концепция структурной химии (Называется теорией резонанса. [c.148]

    Представления Ингольла о мезомерии вошли как составная часть в теорию резонанса, разработанную в 1928—1938 гг. Л. Полингом. Согласно Полингу, молекулу можно описать как быстро флуктуирующую между двумя электронными формулами (резонирующими структурами) и приобретающую стабильность большую, чем любая из этих формул, благодаря резонансной энергии этой флуктуации. В настоящее время теория резонанса (концепция мезомерии — резонанса) трактуется как способ качественного описания распределения электронной плотности в молекулах органических соединений с сопряженными связями. Это распределение электронной плотности по связям и атомам изображают при помощи нескольких классических структурных формул (канонических структур, или резонансных граничных структур). Реальная молекула рассматривается как резонансный гибрид , в котором распределение электронной плотности является промежуточным между распределением электронной плотности в резонансных граничных структурах. Например, бензол может быть изображен пятью резонансными структурами  [c.31]

    Ввиду исторического значения и всеобъемлющего охвата рассматриваемой области может показаться странным, что изложение деталей метода валентных схем приведено только в конце книги, особенно когда некоторые наиболее важные концепции теории валентности, такие, как гибридизация и резонанс, были сформулированы вначале как часть метода молекулярных орбиталей. Причина того, что авторы отложили описание этого вопроса до столь поздней стадии, заключается в том, что метод валентных схем в своей простейшей форме дает, вообще говоря, менее удовлетворительную картину химической связи, чем простейший вариант теории молекулярных орбиталей. [c.287]

    Сделанные выше замечания могли бы показаться достаточной причиной для полного исключения метода валентных схем из настоящей книги. Однако это означало бы пренебрежение той важной ролью, которую сыграла эта теория в формировании языка химии. Кроме того, необходимо рассмотреть ее основные представления, чтобы понять такие широко распространенные концепции, как, например, концепция резонанса. [c.288]


    Вероятно, энергия резонанса — наиболее превратно понимаемая концепция теории. Теория резонанса предсказывает, что [c.303]

    Резонанс и структуры Льюиса подробно рассматриваются в гл. 2. Поскольку этим структурам во втором издании уделено больше внимания, я несколько иначе излагаю концепцию формального заряда . Это и другие изменения в гл. 2 должны помочь тем студентам, которые успели забыть некоторые вопросы из курса общей химии. [c.8]

    Проделав те же вычисления для наблюдения углерода на спектрометре с частотой 500 МГц (частота углерода 125 МГц), где максимальная расстройка резонанса составит около 15 кГц, мы получим длительность л/2-нмпульса 0,3 мкс. Однако на практике при работе с жидкостями на спектрометрах высокого разрешения эта величина составляет чаще всего 15-20 мкс на Ш-мм датчике, что соответствует максимальному значению угла эффективного поля около 45°. Это служит основным камнем преткновения для проведения большого числа многоимпульсных экспериментов, и именно здесь ведутся активные конструкционные разработки, Частично решить эту проблему можно с помощью остроумной концепции составных импульсов, которой мы еще коснемся в гл. 7. [c.109]

    Для того чтобы подготовить почву к описанию концепции резонанса валентных связей гетероароматических систем, ниже в сжатой форме будет рассмотрен и резонанс валентных структур бензола и нафталина. [c.10]

    Структура Кекуле для бензола, несмотря на ее общепризнанное несовершенство, тем не менее использовалась химиками вплоть до 1945 г. Пришедшая ей на смену современная структура появилась не потому, что стали известны новые данные о бензоле, а как следствие разработки и видоизменения структурной теории таким видоизменением явилась теория резонанса. Сначала будет полезно перечислить некоторые основные принципы этой концепции, а затем обсудить их применительно к конкретному примеру — к бензолу. [c.307]

    Таким образом, те же самые концепции — индуктивный эффект и резонанс, которые были столь полезны при обсуждении скоростей реакции, применимы и при обсуждении равновесия. Используя эти концепции для оценки стабильности анионов, можно предсказать относительную силу кислот пользуясь ими, можно не только объяснить влияние заместителей на силу карбоновых кислот, но также и тот факт, что эти соединения вообще являются кислотами. [c.573]

    В области электромагнитных методов разделения лабораторные исследования проводили для изучения возможности применения ряда новых концепций. В последние несколько лет определенные усилия были направлены, в частности, на исследования плазменного разделения. В этой области были признаны два наиболее удачных метода вращение плазмы и ионный циклотронный резонанс. [c.15]

    Более строгое изложение концепции мезомерии — резонанса ( удет дано на стр. 251. [c.185]

    В случае же молекул с сопряженными связями приведение к двух-центровым орбиталям не удается, и в результате аналогичных преобразований де локализация молекулярных орбиталей в достаточной степени не устраняется в этом — некоторое отражение концепции резонанса структур в методе МО. [c.256]

    Л. Полинг попытался выйти из этого затруднения, выдвинув концепцию химического резонанса молекулярных структур. [c.55]

    Можно сказать, что концепция мезомерии — резонанса является способом моделирования реального электронного строения молекул с помощью граничных структур. Резонансные структуры — это в большинстве случаев привычные валентные схемы. Резонансные формулы обладают хорошей наглядностью и позволяют более четко подчеркивать те или иные особенности электронной структуры. [c.31]

    Здесь и далее автор чрезмерно преувеличивает роль концепции резонаи-< а, не упоминая о ее недостатках. Критический анализ теории резонанса см. Реутов О. А. Теоретические основы органической химии, изд. МГУ, 1964, стр. 94—98, а также Хюккель В, Химическая связь. Пер. с англ.—М. ИЛ, [c.162]

    Образ нашего мышления в органической химии меняется в соответствии с усложнением используемых нами модельных представлений. Представление молекул в виде твердых шарообразных атомов, связанных друг с другом стержнями, было и остается важным в работе химика-органика. Однако, чтобы понять механизмы многих реакций, необходимо более усложненное представление молекул, которое дается теорией электронных пар Льюиса, очень успешно развитой английскими химиками сэром Робертом Робинсоном и сэром Кристофером Ингольдом. Для обозначения смещений электронов в ходе химической реакции были использованы изогнутые стрелки, что привело к значительно лучшему пониманию тех факторов, которые контролируют химические реакции. Американский ученый Лайнус Полинг и другие авторы развили теорию резонанса, показав важность рационального подхода, основанного на всеобще применимом пиктографическом языке. Интеллектуальной основой современной органической теории в значительной мере является использование канонических форм или резонансных гибридов наряду с широким применением изогнутых стрелок. Немного парадоксально, что Р. Б. Вудвард, первейший мастер расставления стрелок в реакциях, оказался главным движителем в развитии картинами мыслимой орбитальной теории. Ряд реакций (в частности, циклоприсоединение типа реакции Дильса-Альдера) не очень хорошо описывался с позиций концепций изогнутых стрелок или канонических форм. Иногда такие реакции называли [c.8]

    Гибридные орбитали охраняют концепцию функциональных групп и локализованных связей. Однако нельзя сказать, что гибридизация соответствует какому-то физическому явлению, так же как и резонанс между различными структурами. Ясно также, что карбонильная группа в формальдегиде хотя и похожа, но полностью не идентична карбонильной группе в ацетальдегиде. В ацетальдегиде имеется определенная плотность тг-орбитали на атомах водорода метильной группы. Такое же расширенное распределение тг-ор-биталей наблюдается для ВЗМО пропена и вырожденных ВЗМО пропина. Тем не менее самой характерной чертой карбонильных групп в трех обсуждаемых соединениях является их сходство. [c.38]

    Этому, по нашему мнению, может хорошо по иачь предлагаемый советскому читателю перевод книги А. Тернея Современная органическая химия . В ней очень удачно изложены вопросы описательной, синтетической и физической органической химии, стереохимии, спектральные методы, а также основы биохимии и молекулярной биологии. Последнее обстоятельство особенно важно, так как знакомство с ними является в наш век необходимым для любого культурного человека, а для химика — тем более. Язык автора живой и доходчивый. Книга снабжена большим числом задач различной степени трудности (на наиболее легкие из них, разбросанные по тексту, даны ответы), так что преподаватели и студенты, пользующиеся ею, не нуждаются в каких-либо других задачниках. Каждая глава снабжена словарем основных терминов. Иа пап1 взгляд, в книге слишком широко используется концепция резонанса. И хотя с методической точки зрения последнее обстоятельство в какой-то мере оправданно, необходимо согласиться с мнением Дьюара, что теорию резонанса не следует сохранять даже в качестве неудачного заменителя метода ВМО .  [c.5]

    Для решения этой проблемы химики предложили концепцию резонанса. В своем простейшем виде она гласит, что если для соединения мы можем нарисовать две или более приемлемые структуры, то реальное распределение электронов не соответствует ни одной из них, а представляет нечто промежуточное между ними. Реальную молекулу называют гибридом структур, которые могут быть нарисованы, но сами по себе в действительности не существуют. Такие гипотетические структуры иногда называют резонансными структурами. Идею о том, что реальная молекула не представ.1яется адекватно одной резонансной структурой, а является суперпозицией таких структур, выражают, связывая их друг с другом так называемой резонансной стрелкой Энергия реальной молекулы меньше, чем энергия любой из отдельных резонансны х структур. [c.62]

    Классич. теория хим. строения и первонач. электронные представления оказались не в состоянии удовлетворительно описать на языке структурных ф-л строение мн. соед., напр, ароматических. Совр. теория связи в орг. соед. основана гл. обр. на понятии орбиталей и использует молекулярных орбиталей методы. Интенсивно развиваются квантовохим. методы, объективность к-рых определяется тем, что в их основе лежит аппарат квантовой механики, единственно пригодный для изучения явлений микромира. Методы мол. орбиталей в О. х. развивались от тостого метода Хюккеля к валентных связей методу, ЛКЛО-приближению и др. Широко используются представления о гибридизации атомных орбиталей. Этап проникновения орбитальных концепций в О.х. открыла резонанса теория Л. Полинга (1931-33) и далее работы К. Фукуи, Вудворда и Р. Хофмана о роли граничных орбиталей в определении направления хим. р-щга. Теория резонанса до сих пор широко используется в О. X, как метод описания строения одной молекулы набором канонич. структур с одинаковым положением ядер, но с разньтм распределением электронов. [c.398]

    Физические основы эксперимента по ядерному магнитному резонансу уже были изложены в гл. 1 с позиций квантовой механики. Однако не менее полезно и классическое описание, хотя квантование углового момента нельзя обьяснить на чисто классической основе. Физические концепции, лежащие в основе ЯМР-эксперимента, конструкцию спектрометра ЯМР и многие другие аспекты можно продемонстрировать наиболее четко с использованием классического приближения. В последние годы особенно возросло значение импульсной спектроскопии, которая в области ЯМР высокого разрешения образует основу метода ФП-спек-троскопии. В связи с этим понимание ЯМР-эксперимента с классических позиций взаимодействия магнитных моментов с магнитным полем особенно важно. Действительно, ядерный магнетизм не является областью приложения лишь законов квантовой механики или классической физики, скорее он требует умения комбинировать обе концепции. [c.228]

    Ясная концепция характерных черт химического поведения ароматических молекул эмпирически была развита очень давно, а в двадцатых годах нашего столетия начала интерпретироваться и находить свое выражение в понятиях электронных теорий химии, развитых Ингольдом [27] и Робинсоном [4]. Возникновение понятия ароматичность связано с химическим поведением некоторых соединений в самых разнообразных реакциях, а также, в некоторой степени, с физическими свойствами, такими, например, как диамагнитная восприимчивость, характерными для ароматических молекул. Ароматический характер обычно связывался с различными типами реакционной способности, а не со свойствами изолированной молекулы в ее основном состоянии, и наиболее ранняя удовлетворительная теория, а именно теория мезомерии, подчеркивала эту типично химическую точку зрения. Затем, в короткий период около 1930 года, история которого хорошо известна, Хюккель, Полинг и другие показали совместимость теории мезомерии и ароматического секстета с квантовой физикой электронов. Исходным пунктом являются два основных метода приближенного количественного описания ароматических систем метод валентных схем (ВС) и метод молекулярных орбит (МО), основные достоинства которых в том, что они хорошо обоснованы с физической точки зрения и что при помонди их можно вычислить термохимическую энергию резонанса — величину, которая может быть измерена. Энергия резонанса является свойством основного состояния изолированной молекулы, оказывающим лишь второстепенное влияние на реакционную способность, и концентрирование на ней внимания типично для физической точки зрения. В теории ароматичности центр тяжести сместился с химического поведения на физические свойства, и это отражает значительно большие успехи (по крайней мере вплоть до последнего времени) полуколичествен- [c.7]

    Как следует из рис. 3.3, феноксирадикал можно представить либ рминах концепции мезомерии, где пунктиром изображены гра делокализации неспаренного электрона, либо в терминах кон I резонанса, в виде набора резонансных структур 1-У. Последни1 предпочтителен, так как наглядно показывает активные реак яые центры феноксирадикала. [c.115]

    Две последние главы книги посвящены новым методам обогащения урана. К. П. Робинсон и Р. Дж. Дженсен дают обзор по лазерным методам, в которых разделение происходит при селективном фотовозбуждении атомов или молекул урана. Ф. Босхотен и Н. Натрат сообщают об экспериментах по разделению изотопов во вращающейся плазме и кратко рассматривают некоторые новейшие концепции, такие как применение метода ионного циклотронного резонанса для разделения изотопов. Как лазерный, так и плазменный методы находятся пока в стадии лабораторных исследований. [c.5]

    Первые исследования ангидрониевых оснований а- и 7-карболинов проведены Робинзоном и сотрудниками, что послужило прочной основой для последующего глубокого изучения р-карболиновых оснований. Выводы Робинзона, касающиеся структуры этих оснований, тем более замечательны, что в то время, когда они были сделаны, современные концепции, основанные на теории резонанса, были еще сравнительно мало разработаны. Армит и Робинзон [79] ввели термин ангидрониевое основание для обозначения ангидропроизводных ароматических ониевых гидроокисей. В настоящей главе прежде всего будет уделено внимание основаниям, являющимся производными а- и укарболинов, а затем уже будут рассмотрены р-карболиновые основания. [c.211]

    Анализ развития трещин и концепция локального механического резонанса. Циклическое механическое нафужение дефектных изделий приводит к появлению в их объеме специфического распределения температуры, причем особенно интенсивная генерация тепловой энергии будет иметь место в зонах структурных неоднородностей. Процесс образования температурных фадиентов зависит от частоты механического нафуже-ния, что приводит к концепции локального механического резонанса [80]. Например, на определенных частотах нафужения расслоения в композиционных материалах вибрируют несинфазно с основным материалом, поэтому анализ соответствующих резонансных частот поставляет информацию о размерах и глубине залегания дефектов. [c.170]


Смотреть страницы где упоминается термин Резонанс, концепция: [c.162]    [c.156]    [c.164]    [c.284]    [c.164]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.125 ]




ПОИСК





Смотрите так же термины и статьи:

ВВЕДЕНИЕ. КОНЦЕПЦИЯ РЕЗОНАНСА В ХИМИИ

Дальнейшее развитие и приложение концепции резонанса

Квантовомеханические структуры и смысл концепции резонанса

Концепции мезомерии и резонанса

Концепция резонанса Координационная связь

Концепция резонанса аналогия с механикой

Концепция резонанса дальнейшее развитие

Концепция резонанса и таутомерия

Концепция резонанса природа

Концепция резонанса элемент произвола в ней

Концепция электронного резонанса



© 2025 chem21.info Реклама на сайте