Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды метаболизм

    Ароматические углеводороды попадают в организм при вдыхании паров, а также способны проникать через неповрежденную кожу. Токсическое воздействие собственно ароматических углеводородов, по-видимому, меньше, чем продуктов их метаболизма, в частности фенолов и полифенолов [1]. Ароматические углеводороды быстро насыщают кровь, особенно быстро возрастает их концентрация в печени, почках и железах внутренней секреции. Ароматические углеводороды выводятся с наименьшей скоростью из костного мозга и жировой ткани. [c.317]


    Хотя окисление ароматических углеводородов детально еще не из учено, все же микробиологическое разложение соединений, которые по предположениям являются промежуточными продуктами, исследовано весьма обстоятельно. При этом показано, что микроорганизмы осуществляют распад ароматических углеводородов до конечного продукта — алифатических кислот, включающихся в метаболизм микробной клетки по циклу Кребса (т. е. циклу трикарбоновых кислот). [c.30]

    Распределительная хроматография углеводородов разработана для ароматических соединений, например, 3,4 бензпирена и продуктов его метаболизма, бифенила, о-, м-, и-терфенилов, антрацена, фенантрена, карбазола. [c.200]

    Среди цитохромов Р-450 встречаются изоформы и со строгой субстратной специфичностью. Эти ферменты участвуют в метаболизме эндогенных химических соединений, в частности в биосинтезе стероидных гормонов. Таким образом, налицо противоречивый характер действия цитохромов группы Р-450. С одной стороны, они распознают и метаболизируют миллионы ксенобиотиков, а с другой - как правило, не метаболизируют сотни тысяч эндогенных метаболитов. Следовательно, система цитохрома Р-450 толерантна в отношении эндогенных метаболитов собственного организма, многие из которых обладают большим структурным сходством с экзогенными ксенобиотиками. Каким же образом можно представить себе механизм потери толерантности системы цитохрома Р-450 по отношению к обычным метаболитам соматических клеток и каковы возможные последствия этого явления Метаболизм ксенобиотиков цитохромами группы Р-450 сопровождается двойственным физиологическим эффектом. Во-первых, как уже упоминалось (см. раздел 5.1.1), происходит детоксикация ксенобиотиков, а во-вторых, их метаболическая активация - образование нестабильных, реакционноспособных промежуточных химических соединений, обладающих мутагенной и канцерогенной активностью. Этот механизм является одним из основных в активации химических проканцерогенов в канцерогены, особенно в случае полициклических ароматических углеводородов. [c.450]

    Реакции окисления имеют большое значение в процессе разрушения ароматического кольца и метаболизма стойких пестицидов, например галоидопроизводных углеводородов. Для циклодиеновых соединений (гептахлор) характерно прямое окисление двойных связей с образованием эпоксидов, которые более токсичны, чем исходные вещества, и являются первыми метаболитами, с которых начинается разрушение пестицида в живых организмах. [c.21]


    Кук и Шентол [28] и Баджер [4, 5], основываясь на обнаруженной Криги [31] способности четырехокиси осмия гидро-ксилировать фенантрен в положении 9, 10, изучили действие этого реагента на другие полициклические ароматические углеводороды, содержащие скелет фенантрена, и на антрацен. Реакция протекает медленнее, чем с этиленовыми соединениями, причем атакуются наиболее реакционноспособные связи ароматического характера. Эта реакция резко отличается от атаки ионными реагентами, направленной на наиболее ре к-ционноспособные центры молекулы, и имеет теоретическое значение для изучения характера двойной связи в полициклических соединениях [4, 5]. Результаты окисления ароматических углеводородов четырехокисью осмия представляют особый интерес, так как образующиеся продукты напоминают продукты окислительного метаболизма указанных углеводородов [28]. Гликоли, приведенные в табл. 6, получены из указанных углеводородов [4, 5, 28, 76]. [c.124]

    Хотя эта реакция применялась главным образом для синтеза симметричных оксиранов, внутримолекулярное сочетание ароматических диальдегидов под действием трис (диметиламино) фосфина можно использовать и для несимметричных предшественников. Так, диоксиран дибеиз[аЬ] антрацена (38) был получен путем озонолиза (39) в тетраальдегид (40) с последующим замыканием циклов с помощью трис (диметиламино) фосфина [схема (85)] оксираны ароматических углеводородов важны для изучения метаболизма и механизма действия канцерогенных углеводородов, таких как (39) [180]. [c.737]

    Полихлорбифенилы (ПХБ) — это очень устойчивые соединения, которые долго остаются в окружающей среде и прочно адсорбируются биологическими и осадочными материалами. В. почвах они практически не мигрируют, а микроорганизмы не могут их глубоко деградировать. ПХБ в пробах из окружающей среды отличаются по составу от ПХБ, получаемых в промышленности, поскольку они модифицируются природными системами. Микробная деградация бифенила осуществляется при участии систем катаболизма, сходных с известными для других ароматических углеводородов, С увеличением степени хлорирования скорость метаболизма падает. Сообщалось, что смешанные культуры микроорганизмов осуществляют деградацию промышленных ПХБ до неохарактеризованных углеводородов, при этом расщепляются преимущественно молекулы с более низкой степенью хлорирования. Если замещающих группировок больше, чем в тетрахлор-ПХБ, то молекула становится полностью резистентной. В большинстве работ исследовали превращения чистых изомеров ПХБ. [c.289]

    Стоит отметить, что продукты метаболизма канцерогенных полициклических ароматических углеводородов выделяются в виде глюкуронидов, тогда как в продуктах метаболизма неканцерогенных веществ этого тида преобладают меркаптураты [c.151]

    Метаболизм ароматических углеводородов. Способностью расщеплять ароматические соединения с разрывом ароматического кольца обладают многие бактерии и грибы. Особенно разносто- [c.58]

    Метаболизм хлорированных ароматических углеводородов во внешней среде и различных биологических средах протекает по восстановительному и дегидрохлоридному механизмам [63]. Общепризнан ряд возможных путей метаболизма ДДТ в живых организмах [ПО] окисление до ДДА (дихлордифенилуксусная кислота) дегидрохлорирование до ДДЕ восстановительное дехлорирование до ДДД. [c.89]

    Недавно мы наблюдали возникновение метеповых радикалов при термическом разложении циклогексана под влиянием контакта при невысокой температуре 300—330° (Зелинский и Шуйкин, 1934, [6]). На этом основании становится ясным, что сочетание метеновых радикалов между собой, завершенное присоединением двух метильных групп, ведет к синтезу предельных парафиновых углеводородов нормального строения. Этилен и ацетилен, возникшие также из метана дают полиметиленовые циклы, ароматические углеводороды и гидрированные многоядерные системы. Все они и находятся в нефти. Таким образом, метан, как продукт распада в метаболизме превращений органической материи, может вновь стать источником, ведущим к усложнению химических форм и образованию сложных углеводородов. Но и непредельные углеводороды, возникающие из метана,— этилен, пропилен и бутилен,— дают при кратковременном термическом воздействии на них (600—800°), большие выходы на горючие масла (35—40% от веса взятого олефина). [c.569]

    В нашей стране проводятся исследования метаболизма органических химических загрязнителей биосферы в растениях (С. В. Дурмишидзе с сотр.). Изучают усвоение и превращение растениями спиртов, альдегидов, кетонов, ароматических углеводородов, феноксиуксусных кислот, канцерогенных, полицикли-ческих углеводородов, ароматического диамина — бензидииа п др. Особое внимание уделяется метаболизму в растениях пестицидов, канцерогенов, мутагенов. Исследуют дозы ксенобиотиков метаболическая, угнетаюи ая (ингибирующая) и летальная (смертельная). [c.522]

    Токсическое действие. Выраженные наркотические свойства С.Э. связывают с действием целой молекулы. В организме под влиянием ферментов (различных эстераз) С.Э. гидролизуются, поэтому характер их токсического действия в значительной степени зависит от образующихся в процессе гидролиза кислот, в меньшей степени — от спирта. Характер, место и сила действия зависят от скорости гидролиза. Эфиры, при гидролизе которых образуются сильные кислоты (они гидролизуются быстро и освобождают большое количество ионов водорода), раздражают преимущественно слизистые оболочки дыхательных путей. Типичным примером служат С.Э. галогензамещенных кислот (хлорму-равьиной или хлоругольной, галогенуксусных). Некоторые из этих соединений обладают и высокой общей токсичностью, обусловленной токсичностью продуктов распада. С другой стороны, С.Э. жирных кислот обладают лишь слабыми раздражающими свойствами. Вследствие высокого коэффициента распределения паров накопление в организме до высоких концентраций при вдыхании С.Э. происходит довольно медленно, что и обусловливает слабый наркотический эффект. Поэтому опасность внезапных острьк отравлений не так велика, как при вдыхании углеводородов. С.Э. кислот и непредельных спиртов обладают более выраженньши раздражающими свойствами винилацетат более выраженным, чем этилацетат. Еще сильнее становится раздражающий эффект при включении в спиртовую часть молекул С.Э. галогенов. Наличие двойной связи в кислотном радикале, по-видимому, меньше влияет на усиление раздражающих свойств. Особой токсичностью обладают С.Э. муравьиной кислоты и метиловые эфиры. Особенностью С.Э. этиленгликоля является образование в процессе метаболизма в организме щавелевой кислоты. С.Э. ароматических кислот сравнительно менее опасны в связи с низкой летучестью. [c.643]


    Углеводороды широко распространены также в растениях. Многие высшие насыщенные нормальные углеводороды изолируются из листьев восконосных растений. В пчелином воске содержится (гептакозан). Болотный газ, получающийся ферментацией целлюлозы микроорганизмами, содержит метан. Олефиновые углеводороды встречаются в природе в виде растительных пигментов, эфирных масел, скипидара, природного каучука и многих других веществ. Гораздо реже встречаются ацетиленовые углеводороды. Немногочисленные полиацетиленовые соединения были выделены из растении и являются также продуктами метаболизма грибов. Ароматические системы широко встречаются в растительном мире, но обычно в такой молекуле присутствует кислород- или азотсодержащая функциональная группа. [c.43]

    Многие другие типы канцерогенных веществ, такие, как азокрасители, ароматические амины, уретаны, пирролизидиновые алкалоиды, алифатические нитрозамины и т. д., обычно применяются перорально и вызывают опухоли в органах, удаленных от мест введения требуемые дозы в этих случаях значительно выше (коэффициент 10 —10 ). Подобные соединения, вероятно, являются предшественниками истинных канцерогенов, которые образуются из них в процессе их метаболизма. При ежедневном пероральном введении очень больших доз 20-метилхолантрена у крыс возникает опухоль молочной железы, однако в данном случае не ясно, является ли ответственным за новообразование углеводород или продукт его метаболизма [c.144]


Смотреть страницы где упоминается термин Ароматические углеводороды метаболизм: [c.44]    [c.225]    [c.507]    [c.154]    [c.59]    [c.84]    [c.354]    [c.328]    [c.354]    [c.103]    [c.144]    [c.521]    [c.313]   
Полициклические углеводороды Том 1 (1971) -- [ c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2025 chem21.info Реклама на сайте