Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия фермент-субстратные, строго

    Изучение переходного состояния имеет важнейшее значение не только для органической химии. Все биохимические процессы фермент — субстратного взаимодействия также протекают через активированный комплекс. Специфичность биохимических процессов обусловлена не тем, что субстрат и фермент строго соответствуют друг другу как ключ и замок, такое соответствие приводило бы лишь к комплексообразованию с минимумом энергии для системы. Как показал Кошланд, подобное соответствие является индуцированным, оно возникает в момент взаимодействия фермента и субстрата и сопровождается деформациями молекул. Так, гидролиз гликозидной связи лизоцимом сопровождается изменением конформации пиранозы в полу-кресло только такая конформация соответствует стереохимии реакционного центра фермента. [c.164]


    Ферменты функционируют либо в растворах, либо в надмолекулярных структурах. Сорбция реагентов, именуемых субстратами, и реакция протекают на некоторой поверхности большой молекулы белка. В этом смысле ферментативный катализ сходен с гетерогенным. Однако белок-фермент и малые молекулы субстратов находятся в одной фазе в растворе. Имеется строгая стехиометрия взаимодействия — как правило, одна белковая глобула взаимодействует с одной молекулой субстрата или другого лиганда. При взаимодействии образуется фермент-субстратный комплекс (ФСК), строение и свойства которого изучаются физическими и химическими методами. Ферментативный катализ в растворе — гомогенный катализ. [c.177]

    Приближение субстрата к ферменту вызывает значительные изменения структуры активного центра. Группы, входящие в активный центр фермента, соответствующим образом располагаются относительно друг друга и по отношению к той связи, которая участвует в ферментативной реакции (рис. 33, а). При этом создается уникальная пространственная структура фермента, обеспечивающая образование фермент-субстратного комплекса и строго согласованное взаимодействие субстрата с определенными функциональными группами фермента (А, В, С). [c.220]

    Вследствие этого создается конформационно-неравновесное состояние, которое релаксирует к новому равновесию с образованием продукта. Процесс релаксации происходит медленно и носит направленный характер, включая стадии отщепления продукта и релаксации свободной молекулы фермента к исходному равновесному состоянию. Координата ферментативной реакции совпадает с координатой конформационной релаксации. Температура же влияет на конформационную подвижность, а не на число активных соударений свободных молекул реагентов, что просто не имеет места в уже сформированном фермент-субстратном комплексе. Вследствие больших различий в скоростях мы можем рассматривать отдельно быстрые электронные взаимодействия в активном центре, осуществляющиеся на коротких расстояниях, и более медленные конформационно-динамические изменения в белковой части. На первом этапе катализа стохастический характер динамики белковой глобулы фермента и диффузии субстрата к активному центру приводят к образованию строго определенной конфигурации, включающей функциональные группы фермента и химические связи субстрата. Например, в случае гидролиза пептидной связи для реакции необходима одновременная атака субстрата двумя группами активного центра - нуклеофильной и [c.127]


    Конкретные примеры будут рассмотрены в соответ ствующих главах книги, но уже сейчас из общих соображений можно заключить, что, например, в той области структуры, где действуют полифункциональные и, следовательно, относительно сильные водородные связи, на поверхности фермента будет создаваться высокая локальная концентрация некоторых группировок. Аналогичным образом в молекуле фермента могут возникнуть области, обладающие относительно высоким сродством к неполярным группировкам, и т. п. Более того, пространственное расположение функциональных групп боковых цепей аминокислот может определять субстратную специфичность фермента, которая предполагает, что различные функциональные группы субстрата реагируют со строго фиксированными в пространстве участками структуры фермента. Наконец, третичная структура определяет возможность кооперативного эффекта другого типа, который состоит в том, что в результате взаимодействия субстрата с одной из группировок фермента облегчается его взаимодействие с другой соответствующим образом расположенной группировкой. [c.29]

    Прежде всего необходимо отметить, что круг ингибиторов обычно значительно превышает круг субстратов и специфичность фермента к ингибированию оказывается меньше его субстратной специфичности. В общем виде причина этого достаточно ясна даже при рассмотрении одних лишь конкурентных ингибиторов. Если для катализа необходима адсорбция субстрата и его строгая ориентация относительно каталитических групп, то для ингибирования достаточно не только взаимодействия со всем адсорбционным центром, но и простого связывания ингибитора отдельными элементами адсорбционного центра, как правило состоящего из нескольких участков адсорбции. Поэтому изучение ингибирующего действия разнообразных структурных аналогов субстратов помогает в исследовании адсорбционных центров ферментов и свойств их отдельных элементов, а также химической природы основных, активных для катализа групп фермента. [c.70]

    К достоинствам книги следует отнести строгое физико-хими-ческое изложение основ ферментативного катализа и широкое привлечение данных по структуре ферментов. Интерпретация высокой каталитической эффективности ферментов и субстратной специфичности проводится на основе теории переходного состояния. Понимание того факта, что для ферментативного катализа важна стабилизация переходного состояния за счет дополнительных нековалентных взаимодействий между реагентами, является основой для синтеза высокоэффективных ингибиторов ферментов — аналогов переходного состояния, которые представляют интерес с точки зрения создания лекарственных препаратов. Дополнительное повышение субстратной специфичности (особенно важное в процессах репликации ДНК и биосинтеза белка) обеспечивается механизмами кинетического корректирования . Ряд интересных исследований в этой области проведен самим автором книги. [c.5]

    Однако первая стадия наиболее ответственна, поскольку сама вероятность каталитического акта строго определяется возможностью образования комплекса Михаэлиса. Первично образующееся соединение фермента с субстратом носит название комплекс не вследствие его прямого отношения к классу комплексных соединений, как это понимается в химии, а, скорее, потому, что реальная природа этого соединения пока неизвестна. В огромном большинстве случаев также неизвестны достаточно точно те химические взаимодействия, которые обеспечивают образование комплекса неизвестны и механизмы первичного перераспределения электронов в молекуле субстрата на стадии возникновения первичного комплекса. Более того, до сравнительно недавнего времени мы не имели прямых экспериментальных доказательств реальности существования самих комплексов, которое вытекало в основном из кинетических данных. В 1943 г. были проведены спектральные исследования, свидетельствовавшие о возможности образования промежуточных фермент-субстратных соединений например, в опытах Чанса [13] спектрофотометрическим методом было показано образование комплекса пероксидазы с Н2О2. Были попытки обнаружить фермент-субстратный комплекс методом зонального электрофореза [14]. Однако все эти результаты получены непрямыми методами. В 1963 г. японским авторам Яги и Озава [15] удалось получить прямые доказательства реальности комплекса Михаэлиса. Они выделили стабильный в анаэробных условиях кристаллический комплекс оксидазы D-аминокислот (D-аминокислота О 2 — окси-доредуктаза, КФ 1.4.3.3) с D-аланином (рис. 6). Этот комплекс содержал, помимо апофермента и субстрата, флавинадениндинукле- [c.48]


    Встречаются ингибиторы ферментативных реакции, которые, строго говоря, не могут быть отнесены ни к обратимым, ни к необратимым ингибиторам. Речь идет об ингибиторах, которые при взаимодействии с ферментом образуют первоначально диссоциирующий комплекс, однако этот комплекс аналогично фермент-субстратному комплексу претерпевает дальнейшие химические превращения с образованием более прочных связей между ингибитором и ферментом и которые могут разрываться, например, под действием воды, с освобождением фермента и образованием продуктов распада ингибитора. Примером таких ингибиторов в отношении некоторых гидролаз эфиров карбоновых кислот могут быть производные М-алкилкарбаминовых кислот, которые до недавнего времени относились к обратимым ингибиторам. [c.80]

    Общая схема ферментативной реакции, включает, как мы знаем, образование единого фермент-субстратного комплекса, в активном центре которого и происходит разрыв старых и образование новых связей с появлением продукта. В различных теоретических моделях механизма действия ферментов предлагаются разные способы понижения барьера реакции в фермент-субстратном комплексе. В результате фиксации субстрата на ферменте происходит некоторое снижение энтропии реагентов по сравнению с их свободным состоянием. Само по себе это облегчает дальнейплие химические взаимодействия между активными группами в фермент-субстратном комплексе, которые должны быть взаимно строго ориентированы. Предполагается также, что избыток энергии сорбции, который выделяется при связывании субстрата, не переходит полностью в тепло. Энергия сорбции может быть частично запасена в белковой части фермента, затем сконцентрироваться на атакуемой связи в области образовавплихся фермент-субстратных контактов. Таким образом, постулируется, что энергия сорбции идет на создание низкоэнтропийной энергетически напряженной конформации в фермент-субстратном комплексе и тем самым способствует ускорению реакции. Однако экспериментальные попытки обнаружить упругие деформации, которые могли бы храниться в белковой глобуле фермента, не диссипируя в тепло в течение достаточно длительного времени между каталитическими актами (10 - 10" с), не увенчались успехом. Более того, нужная для катализа взаимная ориентация и сближение расщепляемой связи субстрата и активных [c.126]

    Многие соединения необратимо взаимодействуют с ферментом, образуя ковалентные производные либо в области активного центра, либо в другой части молекулы (непосредственно не участвующей в фермент-субстратном взаимодействии). Эти соединения в строгом смысле не являются неконкурентными ингибиторами, поскольку они необратимо инактивируют фермент. Например, единственная тиоловая группа активного центра папаина быстро реагирует с иодацетатом, в результате образуется остаток 5-карбок-симетилцистеина (разд. 6.1.1). Степень инактивации папаина этим ингибитором прямо пропорциональна степени 5-карбоксиме-тилирования. Иодацетат инактивирует также некоторые ферменты, у которых тиоловые группы локализованы вне области активного центра в этих случаях потеря активности связана с изменением конформации фермента. В гл. 9 рассмотрен ряд других соединений, образующих ковалентные производные специфических групп ферментов и нашедших широкое применение как реагенты для идентификации групп, ответственных за ферментативную активность. [c.265]

    Для объяснения этих фактов активный центр химотрипсина представляют обычно (в развитие идей школы Нимэнна [55, 64]) состоящим из участков, комплементарных по отношению к отдельным фрагментам молекулы специфического субстрата [7, 59, 65]. Движущая сила сорбции фрагмента К на ферменте — это гидрофобное взаимодействие. Фактически образование комплекса фермент — субстрат обусловлено тем, что боковая гидрофобная субстратная группа подвергается термодинамически выгодной экстракции из воды в органическую среду белка (см. 4—6 этой главы). Молекулярная модель активного центра была предложена Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Размеры гидрофобной полости в районе активного центра составляют (10—12) х(5,5—6,5)Х(3,5—4) А. Эти размеры достаточны, чтобы вместить боковую цепь триптофана или тирозина, но вместе с тем форма полости делает возможной только лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.134]


Смотреть страницы где упоминается термин Взаимодействия фермент-субстратные, строго: [c.360]    [c.369]    [c.34]   
Химия протеолиза Изд.2 (1991) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте