Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитрования скорость и эффект растворителя

    Электрофильное замещение в молекуле фенола протекает с большей легкостью, чем в бензоле. Сам фенол нитруется разбавленной азотной кислотой, нитрозируется азотистой кислотой, трибромируется бромом и сочетается с солями диазония (во всех случаях достаточно быстро при температурах, не превышающих комнатной). Скорости замещения фенолов оказались неожиданно высокими [161] по сравнению с фениловыми эфирами (например, для бромирования Л анизол/ Сфенол = 92). Этот факт обьясняют влиянием индуктомерного эффекта (электроны связи О—Н) на сопряжение в переходном состоянии важное значение имеет и образование водородных связей с растворителем. В большей части обзоров ароматическое замещение рассматривается с точки зрения механизма и реагентов (не отделяя химии фенолов), однако и в этих общих обзорах можно найти весьма полезную информацию [162]. Имеется сводка литературы по электрофильному замещению самого фенола [163]. Нитрование фенола в органических растворителях проходит необратимо, причем для различных растворителей характерно постоянное значение соотношения орто/лара-замещения. Галогенирование также протекает необратимо, однако с меньшим соотношением орго/лара-продуктов, чем при нитровании, тогда как сульфонирование и алкилирование [c.236]


    Хорошо было бы закончить книгу, посвященную изучению влияния растворителя на скорость и механизм реакций, рассмотрением такой реакции, как нитрование ароматических соединений, которая обнаруживает столь разнообразную зависимость скорости и механизма от растворителя. Образование водородных связей, комплексообразование, поляризация и ионизация — все эти эффекты обнаруживаются при рассмотрении влияния растворителя на этот тип реакций. Растворитель может так повлиять на механизм процесса, что приведет к обратимости по крайней мере одной из стадий и изменению порядка реакции. Однако книга не завершается рассмотрением ароматического нитрования, так как некоторые другие темы также заслуживают внимания и они будут рассмотрены в последней главе. [c.265]

    И метилового спирта в метилнитрат, для которых при избытке азотной кислоты в нитрометане в качестве растворителя скорость реакции не зависит от концентрации амина и спирта п равна в обоих случаях скорости нитрования бензола или толуола или любого другого ароматического соединения, достаточно реакционноспособ-пого, т. е. реагирующего с кинетикой нулевого порядка. Скорость реакции повышается при добавлении сильной кислоты, например серной, и понижается с добавкой ионов ЫОз", т. е. качественно наблюдаются те же эффекты, что и для нитрования ароматических соединений. Некоторые типичные результаты приведены в табл. 1, где [c.265]

    Одна нз причин, почему тримолекулярный механизм фактически никогда не отстаивали, заключается в том, что в соответствии с описанной в гл. VII хорошо разработанной теорией о влиянии растворителя на скорость процесса Se3, в котором исчезают ионные заряды, он должен замедляться полярным растворителем, а в то же время известно, что ароматическое нитрование особенно хорошо протекает в полярных растворителях. Правда, указанный эффект в значительной мере обусловлен влиянием растворителя на процессы, которые вызывают образование нитроний-ионов однако это не может определять влияния растворителя на общий процесс нитрования, если на последней или на любой важной предшествующей стадии такое влияние противоположно. Более детальный анализ [1491, основанный на изучении влияния растворителя на реакции нулевого и первого порядка, показал, что увеличение полярности растворителя в действительности сильно ускоряет образование нитроний-иона и оказывает сравнительно незначительное влияние на скорость атаки ароматической молекулы нитроний-иона. Эти данные находятся в соответствии с механизмом Se2, нри котором на стадии, определяющей скорость реакции, не образуются и не исчезают ионные заряды с другой стороны, на основании указанных данных исключается механизм SgS. Меландеру [154] принадлежит изящное доказательство того, что с кинетической точки зрения перенос протона является несущественной стадией нри атаке нитроний-ионом. Он использовал то обстоятельство, что связи с изотопными атомами водорода значительно различаются ио нулевой энергии, в то время как только часть этой разницы обнаруживается в переходных состояниях реакций с разрывом связей, поскольку частично разорванные связи обладают меньшими колебательными квантами это ведет к различиям в энергиях активации и в скоростях. Эксперимептальным путем точно уста- [c.278]


    При бромировании молекулярным бромом, как и при нитровании, обнаружено заметное влияние пространственных эффектов, однако они отсутствуют в реакциях с участием положительного брома . Так бромирование молекулярным бромом гр г-бутилбен-зола проходит в незначительной степени в орго-положение к трет-бутильной группе, однако при использовании положительного брома образуются значительные количества о-брои-трет-бутил-бензола. Бензол и [ Нб]бензол бромируются с почти одинаковыми скоростями. Имеются доказательства в пользу того, что при низкой кислотности в случае некоторых реакционноспособных субстратов можно достигнуть переходного состояния протонированием первоначально образующегося комплекса [77]. Изотопный эффект растворителя при бромировании бензола в хлорной кислоте (0,16 М) равен = 2,2. Возникает вопрос, почему такой путь реак- [c.377]

    Изотопный обмен водорода имеет много обш,его с химическими реакциями замещения водорода . Это впервые заметив Ингольд, сопоставляя дейтерообмен между ароматическими углеводородами и серной кислотой с их реакциями при участии сильных кислот (нитрование, сульфирование). Но изотопные реакции значительно проще, так как строение молекулы вещества остается почти неизменным при замещении водорода на его изотоп. Если пренебречь небольшим изменением свободной энергии, вызванным различиями нулевых энергий связей с тритием, дейтерием и протием, то допустимо считать, что при изотопном обмене отсутствует тепловой эффект и протекание реакции определяется только кинетическими параметрами. Кинетика реакций изотопного обмена в большинстве случаев достаточно точно описывается простым уравнением первого порядка. Измеряя скорость обмена дейтерия на обычный водород в различных монодейтеропроизводных одного и того же соединения в разных растворителях, можно легко оценить количественно реакционную способность неравноценных атомов в молекуле, судить о тонких эффектах взаимного влияния атомов и обнаружить активную роль среды. [c.9]

    Изучение изотопных эффектов [271] показывает, что в большинстве реакций-электрофильного ароматического замещения отрыв протона происходит не на стадии, определяющей скорость реакции. В реакциях нитрования, бромирования, азосочетания в стерически незатрудненное положение [271], сульфирования действием ЗОз в органических растворителях [272] отношение ки/кх) мало отличается от единицы. В некоторых вариантах сульфирования и ацилирования отмечен изотопный эффект" ( н/ п = 1,5—3,0), указывающий на определенный вклад в кинетику стадии элиминирования протона. Единственной реакцией/ где первичный изотопный эффект водорода столь значителен ( н/ о = 4,7—6,8), что позволяет говорить о стадии переноса протона, как почти целиком определяющей скорость [271], является реакция меркурирования. Вместе с ее малой чувствительностью к влиянию заместителей (см. выше) это дает основание для предположения о специфике механизма меркурирова-. ния [264]. [c.93]

    Электрофильное замещение в молекуле фенола протекает с большей легкостью, чем в бензоле. Сам фенол нитруется разбавленной азотной кислотой, нитрозируется азотистой кислотой, трибромируется бромом и сочетается с солями диазония (во всех случаях достаточно быстро при температурах, не превышающих комнатной). Скорости замещения фенолов оказались неожиданно высокими [161] по сравнению с фениловыми эфирами (например, для бромирования анизол/ фенол — 92). Этот факт обьясняют влиянием индуктомерного эффекта (электроны связи О—Н) на сопряжение в переходном состоянии важное значение имеет и образование водородных связей с растворителем. В большей части обзоров ароматическое замещение рассматривается с точки зрения механизма и реагентов (не отделяя химии фенолов), однако и в этих общих обзорах можно найти весьма полезную информацию [162]. Имеется сводка литературы по электрофильному замещению самого фенола [163]. Нитрование фенола в органических растворителях проходит необратимо, причем для раз-л-ичных растворителей характерно постоянное значение соотношения орго/лара-замещения. Галогенирование также протекает необратимо, однако с меньшим соотношением орго/пара-продуктов, чем при нитровании, тогда как сульфонирование и алкилирование по Фриделю — Крафтсу обратимы. При сульфонировании при низких температурах получают главным образом орто-продукты, при более высоких температурах — мара-продукты. При длительных реакциях накапливаются значительные количества жета-сульфо-новой кислоты, так как десульфонированне жета-сульфоновой кислоты является самым медленным из всех обратных процессов. При алкилировании по Фриделю — Крафтсу также наблюдаются различия в соотношении орто/пара-продуктов при кинетическом и термодинамическом контроле. При бромировании 3,5-диалкил-фенолов выделено диеноновое промежуточное производное (135). [c.236]



Смотреть страницы где упоминается термин Нитрования скорость и эффект растворителя: [c.154]    [c.361]    [c.99]    [c.1752]    [c.1752]    [c.261]   
Электронные представления в органической химии (1950) -- [ c.418 ]




ПОИСК





Смотрите так же термины и статьи:

Растворители н их эффекты

Растворители при нитровании

Скорость нитрования



© 2025 chem21.info Реклама на сайте