Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контактная коррозия сталей

    В атмосферных условиях и в воде допускается контакт между нержавеющей сталью и алюминием, и он не представляет опасности. В растворах хлористого натрия, в пластовой и в морской воде контакт алюминия и его сплавов с нержавеющей сталью интенсифицирует скорость их коррозии. В морской воде контактная коррозия проявляется особенно сильно, когда большая поверхность нержавеющей стали контактирует с малой поверхностью алюминиевого сплава. Особенно опасен контакт с медными сплавами, даже при отсутствии электрического контакта. Существенную роль при этом играет вторично осаждающаяся медь, образующая эффективные местные катоды. Если алюминий анодирован или окрашен, то это значительно снижает опасность контактной коррозии. [c.59]


Рис. 13.2. Подтравливание никелевого гальванического покрьггия на стали в результате контактной коррозии в 3 % растворе Na l (ХЮО). Трещина образовалась вследствие циклического нагружения при испьгганиях на коррозионную усталость [2а] Рис. 13.2. Подтравливание никелевого гальванического покрьггия на стали в результате <a href="/info/69597">контактной коррозии</a> в 3 % растворе Na l (ХЮО). Трещина образовалась вследствие <a href="/info/307277">циклического нагружения</a> при испьгганиях на коррозионную усталость [2а]
    Алюминий и его сплавы чувствительны к контактной коррозии. В обычной атмосфере усиливает коррозию контакт с медью и медными сплавами, с никелем и его сплавами, с серебром. Допустим контакт со сталями, кадмием, цинком, хромом, титаном, магнием. В морской и пресной воде не допустим контакт с медью и ее сплавами, с титаном, с нержавеющими сталями, с никелем, оловом, свинцом, серебром. Допустим контакт с цинком и кадмием. [c.75]

    Другая серия опытов, проведенных в течение пяти лет в условиях приморского влажного субтропического климата, была посвящена изучению вопросов контактной коррозии титановых сплавов. Результаты опытов показали, что титан и его сплавы как в отдельности, так и в контакте являются коррозионностойкими не только в условиях атмосферы, но и в море на разных глубинах (3- 8 м). Отмечено, что обрастание на титане меньше, чем на поверхности нержавеющих сталей. Контакт титановых сплавов (АТЗ, 0Т4) с углеродистыми и низколегированными сталями и со сплавами алюминия в условиях морской атмосферы ускоряет процесс разрушения последних. [c.84]

    Коррозионные проблемы на участке разделения углеводородов 4 связаны не только с получением самого поглотительного раствора, но и с выделением из него меди, в тех случаях, когда стабильность раствора по тем или иным причинам нарушена. Это может произойти вследствие изменения предписанной рецептуры и режима приготовления или регенерации поглотительного раствора, вследствие чрезмерного повышения температуры или в результате попадания в раствор посторонних химических реагентов, а также и по другим причинам. Известен случай, когда в результате аварии в поглотительный раствор попал хладоноситель из охладительной системы, что привело к осаждению меди на многих участках аппаратов и трубопроводов, изготовленных из обычной углеродистой стали. Омеднение некоторых мест на внутренних стенках аппаратов в дальнейшем вызвало интенсивную контактную коррозию стали, являющейся анодом. Поскольку тонкий слой меди обычно держится на протравленной стальной поверхности прочно, действующие макроэлементы сохраняются очень долго, В такой частично омедненной аппаратуре коррозия, как правило, не при-- останавливается и тогда, когда испорченный поглотительный раствор заменяется свежим. Привести аппаратуру в надежное рабочее состояние можно, лишь удалив с ее внутренней поверхности медные отложения, что очень трудно, а иногда и невозможно. [c.190]


    В электролитах, в которы.ч коррозия протекает с кислородной деполяризацией, например в морской воде, предельный диффузионный ток увеличивается при перемешивании, вследствие чего увеличивается и сила тока контактной пары. Такое явление наблюдается для пар Ре — Си, Ре — нержавеющая сталь и др. Ниже приведены данные, показывающие влияние скорости движения морской воды на скорость контактной коррозии (в числителе скорость движения воды 0,15 м/с, в знаменателе - 2,4 м/с). [c.201]

    В морской воде почти все обычно используемые металлы и конструкционные стали проявляют склонность к коррозии. Кроме того, повышенная опасность коррозии возникает при составных конструкциях из различных металлов вследствие хорошей электропроводности морской воды. Для оценки контактной коррозии могут быть использованы ряд напряжений различных металлов в морской воде (табл. 2.4) и правило площадей по формуле (2.43). Кроме того, существенное влияние оказывают сопротивления поляризации [см., формулу (2.42)]. Общее представление об этих условиях дают диаграммы контактной коррозии [12, 13]. К образованию контактных коррозионных элементов могут привести и участки с различной структурой в о>дном и том же [c.355]

    Прокатная окалина на стали тоже может работать в качестве катода в паре со сталью. Обычно в окалине имеются видимые и невидимые трещины, и поэтому сталь с прокатной окалиной часто подвергается язвенному разрушению вследствие контактной коррозии. [c.202]

    По данным Р. Мирса [76], алюминиевые сплавы в теплой и влажной чистой атмосфере стойки даже при значительном скоплении влаги. Алюминиевые сплавы в контакте с большинством металлов и сплавов являются анодами и поэтому сильно разрушаются, в особенности при соприкосновении с медью и медными сплавами. Контакт алюминиевых сплавов с обычной сталью более опасен, чем с нержавеющей. Контактная коррозия алюминиевых сплавов проявляется сильнее всего в приморской атмосфере и в морской воде. В минеральных водах Цхалтубо алюминиевые детали в контакте с обыкновенной сталью выходят из строя через 2—3 месяца [77]. [c.73]

    На скорость контактной коррозии оказывает влияние скорость движения воды (табл. 3). При малых скоростях движения воды влияние разнородных положительных контактов на коррозию стали практически одинаково, при больших скоростях проявляется индивидуальная природа катода и в наибольшей степени усиливают коррозию стали медь и никель. [c.9]

    Для алюминиевых бурильных труб с увеличением pH от 1 до 13 меняется характер коррозионного поражения слоевая коррозия — в сильнокислой области, точечная — при рН=3—11, равномерная — в сильнощелочной среде. Алюминиевые бурильные трубы целесообразно применять при использовании буровых растворов с pH от 4 до 10,5, так как сдвиг потенциала в отрицательную область приводит к увеличению тока контактной коррозии. Существенное влияние pH раствора оказывает на коррозионно-усталостную выносливость как алюминиевых сплавов, так и стали. [c.107]

    Контактная коррозия наблюдается при контакте алюминия с более благородными металлами в электролитах. В этом виде коррозии существенную роль играют состояние поверхности контактируемых металлов, площадь контакта, аэрация и степень деформации. Значительная контактная коррозия наблюдается при контакте алюминия с медью, ее сплавами и сталью известны случаи контактной коррозии алюминия с алюминиевыми сплавами. Скорость коррозии алюминия при контакте с нержавеющей сталью значительно повышается в водных растворах хлорида натрия и в меньшей степени в спиртовых растворах. [c.124]

    Сила притяжения к натертому янтарю и некоторые другие проявления электричества были известны уже в древности. По гвоздям из обломков одного старого судна стало известно, что римляне уже знали о контактной коррозии, связанной с протеканием электрического тока. Для защиты от червей-древоточцев на деревянных досках античных гребных судов применяли покрытия из свинцовых пластин, прикрепленных медными гвоздями. Между свинцом и этими гвоздями образовывался коррозионный элемент, так что с течением времени при работе в соленой морской воде менее благородные пластины свинца сильно корродировали вокруг медных гвоздей и отваливались. Античные строители судов нашли простое решение они покрывали свинцом также и головки медных гвоздей. В итоге между обеими металлическими деталями не образовывалось коррозионного элемента и ток между ними уже не протекал, благодаря чему прекращалась и коррозия [20]. [c.32]

    При контактной коррозии важную роль играют вторичные явления, выражающиеся в изменении потенциалов контактных пар. Так, при контакте железа с нержавеющими сталями происходит разрушение железа как анода, но вместе с тем по мере накопления продуктов коррозии на нержавеющей стали доступ кислорода затрудняется и последняя подвергается разрушению при этом определенное значение имеет и щелевой эффект [7]. На интенсивность контактной коррозии влияет соотношение площадей катода и анода, которое определяет поляризуемость каждого электрода [80—81]. [c.82]


    Покрытие предотвращает контактную коррозию сталей при сопряжении с деталями из алюминия и его сплавов обеспечивает свинчиваемость резьбовых деталей. [c.899]

    В атмосферных условиях контактная коррозия зависит от характера атмосферы так, например, сплав МЛ5 в контакте с оцинкованной сталью является анодом и в промышленной атмосфере корродирует в 2 раза быстрее, чем в морской, и в 4 раза быстрее, чем в сельской. Изменение метеорологических элементов атмосферы оказывает на контактную коррозию более сильное влияние, чем на изолированные металлы. [c.82]

    Для получения сравнительных данных изучали контактную коррозию в морской атмосфере и в морской воде как отдельных цветных металлов в контакте со сталью, так и контактов двух разных цветных металлов со сталью. Стенды помещали на высоте 2 м от зеркала воды, так что образцы периодически смачивались и высыхали. Вторую серию опытов проводили в бухте Батумского порта на глубине 2 л в течение 6 месяцев осенне-зимнего периода [81]. Образцы снимали со стенда и обрабатывали через 10, 20, 50, 70, 80, 90 и 180 сут.. [c.83]

    Контактирование сталей, одинаковых по химическому составу (например, низколегированных и углеродистых), допускается, но при этом контактная коррозия полностью не исключается. По мере того как увеличивается в сталях концентрация легирующих элементов, контактное воздействие этих сталей усиливается. Объясняется это тем, что при увеличении концентрации хрома, никеля и меди увеличивается разность потенциалов [65]. [c.84]

    Цинк в субтропической атмосфере при достаточной толщине электрохимически защищает железо и сталь. Олово не обнаружило каких-либо защитных свойств. При малейшем повреждении покрытия железо корродировало во много раз сильнее, чем в отсутствие покрытия. Поэтому в приморской и промышленной атмосферах такие контакты не должны применяться. Дополнительные защитные меры, в частности пассивирование луженых деталей в сильных окислителях с последующим применением масел и смазок или ингибиторов, уменьшали контактную коррозию. [c.84]

    Контактная коррозия весьма опасна в морской воде. Пример — судьба яхты Зов моря , днище которой было обшито монель-металлом (медно-никелевым сплавом), а рама руля, киль и другие детали изготовлены из стали. Когда яхта была спущена на воду, возник гигантский гальванический элемент, состоящий из катода (монель-металла), стального анода и электролита — морской воды. В результате судно затонуло, не сделав ни одного рейса. Ученые считают, что причиной гибели Колосса Родосского тоже была контактная коррозия бронзовая оболочка гигантского памятника была смонтирована на железном каркасе. Под действием влажного, насыщенного солями средиземноморского воздуха железный каркас очень быстро разрушился. [c.144]

    В — в парах. И — емкости для хранения, перегонные установки (включая установки для 58%-ной уксусной кислоты, содержащей 2% муравьиной кислоты), центрифуги (также в присутствии уксусного ангидрида, бензола, салициловой кислоты или сульфата хрома), резервуары (при 100°С и в присутствии органических растворителей), установки для очистки пищевого уксуса триоксидом хрома, емкости для транспортировки, реакторы для окисления уксусного альдегида воздухом или кислородом в присутствии ацетата марганца в качестве катализатора при 55°С, изготовленные из углеродистой стали и покрытые алюминием. Соли тяжелых металлов, минеральные кислоты, хлориды, муравьиная кислота в значительной степени ускоряют коррозию. Уксус, полученный из неочищенного спирта, воздействует на алюминий гораздо сильнее, чем чистая уксусная кислота такой же концентрации. При контактировании алюминия с аустенитными хромоникелевыми сталями контактная коррозия не наблюдается. [c.439]

    Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят > приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен- [c.83]

    Ионы NHJ, находясь в воде, интенсифицируют развитие микрофлоры и тем самым способствуют развитию биогенной коррозии. При pH > 7 соединения, содержащие ионы Fe " , взаимодействуют с молекулярным кислородом, снижая коррозию. Ионы Fe стимулируют катодный процесс и способствуют развитию коррозии. Ионы Си " , осаждаясь на поверхности стали в виде Си, инициируют контактную коррозию. Из анионов наибольшее влияние на процесс коррозии оказывает ион СГ. Его присутствие в воде вызывает интенсивную локальную коррозию. Ионы S0 " также активируют коррозионный процесс. Кремниевая кислота и растворимые силикаты, наоборот, оказывают ингибирующее действие на коррозию металлов. [c.15]

    Ионы Си + являются сильными деполяризаторами катодных участков и поэтому способны ускорять развитие коррозии. Кроме того, в воде, содержащей соединения меди(П), происходит химическое осаждение меди на поверхности стали. В результате инициируется контактная коррозия, характеризующаяся высокой степенью локализации. [c.38]

    Наиболее благоприятными для эксплуатации стальных оцинкованных труб являются pH 7,5—8,5, при более низких к более высоких pH коррозионная стойкость труб снижается. Коррозия оцинкованных сталей проявляется в разрушении цинкового покрытия (на что указывает появление в воде белой суспензии) и стали с переходом продуктов коррозии в воду п с локальным отложением их на внутренних поверхностях труб , что вызывает утончение их стенок. Кроме того, на стенках труб образуются бороздки. Бороздки появляются в результате коррозии металла вблизи сварных швов труб вследствие различия в-электродных потенциалах металла сварного шва и основного металла. Наиболее типичными видами коррозии стальных оцинкованных труб горячего водоснабжения являются локальная коррозия (в основном питтинговая) и контактная коррозия. С повышением скорости движения воды (начиная с 0,30— 0,95 м/с) скорость коррозии оцинкованных труб увеличивается прямо пропорционально корню кубическому из скорости воды. [c.159]

    Из материалов, используемых в конструкции приборов, наиболее стойкими оказались высокохромистые и хромоникелевые нержавеющие сплавы, алюминий, бронза, медь и медные сплавы. Когда в конструкции и медь, и медные сплавы находились в контакте со сталью, алюминием, свинцом, эловом и его сплавами, то наблюдалась коррозия последних сплавов. В таких случаях необходимо применять специальные меры защиты от контактной коррозии, а также специальные покрытия. [c.79]

    При изготовлении таких аппаратов следует следить за тем, чтобы торцы двухслойных листов нигде не соприкасались с агрессивной средой, Нарущение этого правила может привести к контактной коррозии, в результате которой основной слой углеродистой стали (анод) подвергнется усиленному разрушению. [c.179]

    Коррозионную активность меди в охлаждающей воде доменной печи после обработки композицией сравнивали с коррозионной активностью без обработки. Полученные результаты показывают, что скорость коррозии меди понижается на 84 %. Кроме этого определялась коррозия в проточной охлаждающей воде короткозамкнутой гальванической пары медь — малоуглеродистая сталь в виде отрезков труб. Хотя некоторое доказательство наличия контактной коррозии между медью и малоуглеродистой сталью наблюдалось как в случае обработки ингибирующей композицией, так и без нее, однако секция трубы в случае обработки ингибирующей композицией содержала меньше осадка и подвергалась меньшей коррозии. [c.62]

    С иоры могут привариваться к аппарату с помощью накладных листов и без них. Для исключения контактной коррозии в случае пригарки опор из углеродистой стали к аппарату из коррозионно-стойкой стали необходлмо применять накладные листы из коррозионностойкой стали толщиной, не меньшей толщины обечайки. [c.95]

    Пример 3.3. Оценить максимальную скорость контактной коррозии при сопряжении переборки из сплава АМГ-61 со стальным (сталь 09Г2) [c.184]

    Один из способов снижения наводороживания - нанесение подслоя из другого металла, обладающего более низкой водородопроницае-мостью. Эффективно в качестве подслоя при кадмировании использовать медь или никель. Оба металла снижают степень наводороживания стали, но не исключают его полностью. Кроме того, подслой меди и никеля может вызвать в некоторых агрессивных средах развитие контактной коррозии, ухудшающей коррозионное состояние изделия. Поэтому при выборе металла подслоя необходимо учитывать поведение системы в целом. [c.104]

    При коррозии в морской воде или других нейтральных средах вследствие высокой электропроводности воды дальность действия контакта велика, поэтому соотнощение площадей поверхности контактирующих металлов существенно влияет на характер контактной коррозии. Например, сочетание медных образцов большой площади с относительно малой площадью образцов из нержавеющей стали в морской воде опасно для нержавеющей стали. В этом случае сталь, активируясь, может стать анодной по отнощению к меди, и тогда возможно сильное ускорение коррозии нержавеющей стали. Наоборот, контакт малых деталей с большими поверхностями нержавеющей стали более опасен для медных С1Тлавов в этом случае вероятнее устойчивое катодное состояние стали по отношению к меди и возможно значительное ускорение коррозии меди за счет контакта со сталью. [c.202]

    В стальных конструкциях при эксплуатации в атмосферных условиях можно применить алюминиевые заклепки. Дальность действия контакта в тонких пленках электролитов не превыщает 5—6 мм. Поэтому если применить оцинкованную шайбу или шайбу из изоляционного материала, контакт стали с алюминием не представляет опасности. Защитные покрытия на крепежных деталях должны быть такие же, как у соед 1Няемых деталях, например, для оцинкованных деталей должны применяться оцинкованные болты. При частом раскрытии элементов рекомендуется применять крепежные детали из пассивных металлов, однако с предупреждением контактной коррозии. [c.203]

    Контактная коррозия обусловлена контактом двух разнородных металлов, при котором металл с боЛее отрицательным электродным потенциалом становится анодом и усиленно корродирует. Межкристаллитная коррозия проявляется при использовании нержавеющих аустениТных сталей преимущественно в растворах азотной кислоты и заключается в избирательной коррозии металла по границе Зерен. Характерным признаком разру-34 [c.34]

    Исследования контактной коррозии пары алюминиевый сплав — сталь СтЗ, проведенные путем периодического погружения в 0,1%-ный раствор хлорида натрия на 10 мин с последующей выдержкой на воздухе в течение 50 мин, показывают, что скорость коррозии составляет 0,08—0,12 мм/год для сплавов В92, В93, 01915 и 0,02—0,04 мм/год для сплавов АМг5, АМгб, АДЗЗ. [c.130]

    На всех перечисленных выше образцах, за исключением заделочной арматуры из нержавеющей стали AISI 304 и стальной проволоки, видимой коррозии не было. Внутренние поверхности арматуры из нержавеющей стали марки 304 подверглись сильной щелевой коррозии. Скорость этой щелевой коррозии, по-видимому, увеличивалась за счет образованной двумя разными металлами гальванической пары, анодом которой являлась нержавеющая сталь. На одном из титановых канатов проволока из малоуглеродистой стали, использованная для обвязывания конца каната почти полностью разрушилась вследствие контактной коррозии. [c.403]

    При изучении интенсивности коррозии исследуемых жидкостей электрическим методом использовалась установка для изучения контактной коррозии металлов. Металлом (анод) в наших опытах служила сталь марки 40ХН, изготовленная в виде прямоугольника размером 9x9x20 мм. [c.14]

    Контактная коррозия развивается в растворах электролитов при контакте металлов, обладающих различными электрохимическими свойствами, например, системы углеродистая сталь/нержавеющая сталь, углеродистая сталь/алюминий (или его сплавы) и др. Контактная коррозия может возникать также в случаях, если различие элек-трохимичес1сих свойств обусловлено применением пайки или сварки при изготовлении конструкции из одного и того же металла или при контакте деталей, изготовленных из металла одной и той же марки, но существенно различающегося по своим свойствам в ее пределах. Механические напряжения, приводящие к изменению электрохимических характеристик металла, также могут вызвать возникновение контактной коррозии при соединении деталей из одного и того же металла, но по-разному механически обработанных. Таким образом, плохо продуманные с точки зрения конструкционного оформления сложные металлические объекты могут досрочно выходить из строя вследствие контактной коррозии. [c.134]

    Коррозия разл. участков пов-сти металла м. б. неравномерной из-за хим. илн физ. неоднородности металлич. пов-сти и среды. При действии на пассивный металл активаторов (напр., ионов С1-) возникает пипаттгоеая коррозия. Очень опасны межкристаллитная коррозия и ножевая , связанные с усиленной коррозией границ зерен и межкристаллит-ных выделений в сплавах (вапр., в хромоникелевых сталях, стабилизированных Т1 или КЬ). Эти виды К. м. обычно наблюдаются вдоль сварных швов. Коррозионное растрескивание в условиях воздействия на металл растягивающих напряжений наз. коррозией тюд напряжением, динамич. знакопеременная нагрузка приводит к коррозионной усталости. Известны случаи избирательной коррэзии более электроотрицат. компонента сплава (напр., обесцинкование латуней). С конструктивными особенностями изделий связаны щелевая коррозия и контактная коррозия. В хим. пром-сги прямые потери ог общей К. м., коррозии под напряжением, питшговой и межкристаллитной относятся примерно как 3 4 2, 5 2. [c.278]

    Одной из распространенных форм коррозии оборудования из нержавеющей стали является контактная коррозия, протекающая при контакте деталей из нержавеющей стали с более благородными металлами или углеродом, в результате которого начинает действовать макрогальванический элемент с морской водой в качестве электролита. В этом гальваническом элементе сталь играет роль анода, т. е. она подвергается разрушению, интенсивность которого тем выше, чем больше внутренний ток элемента. [c.23]

    Хотя хромонйкелевые и хромоникелемолибденовые стали и обладают высоким электродным потенциалом, но они не свободны от гальванической (контактной) коррозии. Последняя возникает, в частности, при контакте с углем и графитом, которые в последнее время широко применяются в химическом м ашиностроении. [c.151]


Смотреть страницы где упоминается термин Контактная коррозия сталей: [c.85]    [c.59]    [c.8]    [c.34]    [c.128]    [c.194]    [c.199]    [c.278]    [c.141]   
Морская коррозия (1983) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Контактная коррозия



© 2025 chem21.info Реклама на сайте