Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий интерметаллиды

    Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести). [c.66]


    Как и при горячем цинковании, сталь подвергается травлению, предварительному флюсованию, а затем погружается в ванну с расплавленным алюминием, во время реакции с которым образуются слои сплавов алюминия с железом, а при удалении из ванны — покрытие из чистого алюминия. Однако этот процесс является более сложным по сравнению с горячим цинкованием из-за двух основных факторов более высокой точки плавления алюминия и большей скорости образования окиси алюминия. Для получения достаточной текучести расплавленного алюминия рабочая температура должна поддерживаться на уровне выше 700° С. Мгновенная реакция между железом и алюминием при этой температуре приводит к образованию хрупкого интерметаллида. Окись алюминия, покрывая поверхность стали, погруженной в ванну, мешает образованию металлического покрытия. Прожилки окиси алюминия могут загрязнять поверхность покрытия при удалении изделия из ванны. [c.73]

    Металлы III группы легко образуют интерметаллиды с другими металлами, что используется при создании сплавов со специальными свойствами. Карбиды и бориды этих металлов тугоплавки и слабо окисляются, обладая при этом электронной проводимостью. Нитриды этих металлов также отличаются металлической электропроводностью и, несмотря на одинаковые количественные составы с нитридом алюминия, совершенно на него не похожи (табл. 73). [c.338]

    При погружении стали в расплавленный алюминий образуется большое количество промежуточных соединений алюминия и железа с переменным составом. Рост слоя этих соединений происходит интенсивнее и непрерывнее, чем при горячем цинковании. Промежуточные соединения более твердые и менее вязкие по сравнению с чистым алюминием. В связи с этим чрезмерное легирование может привести к нарушению покрытия. Снижение легирования в процессе алюминирования происходит при добавлении 3—7% кремния в алюминий это замедляет скорость образования интерметаллидов и, следовательно, снижает толшину их слоя, улучшая его однородность, и уменьшает твердость. [c.73]

    В случае напыления алюминия на сталь может возникнуть некоторая диффузия интерметаллида под действием последующего отжига. Вследствие сплавления и увеличенного содержания инертной окиси алюминия при отжиге достигается очень высокая степень сопротивления действию коррозии с увеличением температуры. [c.81]

    Дпя получения алюминиевого покрытия образцы окунали в расплав алюминия при 700°С с выдержкой в течение 45 с. Образовывалось двухслойное покрытие к основе прилегал слой интерметаллида Fe, AI,, а сверху — слой чистого алюминия. Общая толщина слоев 70 мкм. При повышении содержания углерода в стали от [c.184]


    Стационарный потенциал алитированных сталей равен —(915 920) мВ (см. рис. 100), т.е. на 350—370 мВ отрицательнее, чем у сТалей без покрытия. Однако через 4 сут испытаний потенциал стали 20 смещается в положительную сторону, примерно до —540 мВ. Сдвиг потенциала алитированной стали 45 происходит с меньшей интенсивностью и после 12 сут достигает (-680) -ь (-690 мВ). Причина смещения потенциалов — интенсивное растворение слоя алюминия. Однако сталь остается защищенной от воздействия среды слоем интерметаллида, потенциал которого более положительный, чем у сталей, и составляет —(530—540) мВ. Таким образом, защитные слои, получаемые при жидкостном алитировании, функционируют сначала в качестве анодного, а затем катодного покрытия. [c.187]

    Присутствие значительных количеств примесей, таких как железо, нежелательно, так как при этом в алюминии образуются хрупкие интерметаллиды, что приводит к ухудшению механической прочности, антикоррозионной стойкости и т, д. Сплавы алюминия применяемые для изготовления штамповки должны, однако, содержать некоторое количество железа (от 0,60 до 1,20 %) для уменьшения износа материала штампа. Вредное действие хрупких интерметаллидов в этом случае не проявляется благодаря тому, что при быстром затвердевании в ходе литьевой штамповки образуются кристаллы малых размеров. [c.31]

    Эффективность образования аустенитной или ферритной структуры под действием легирующих элементов сплава определяется следующими положениями. Увеличение содержания хрома, титана, кремния, алюминия и молибдена способствует образованию ферритной фазы, а увеличение содержания никеля, марганца, углерода и азота расширяет область существования аустенита и повышает его устойчивость. Поэтому для получения стали с неустойчивым аустенитом необходимо учитывать влияние каждого элемента, входящего в ее состав. Решение этой задачи требует проведения большой экспериментальной работы, вследствие чего в настоящее время разработано очень мало марок сталей с высокой сопротивляемостью гидроэрозии. В хромоникелевых сталях при длительном нагреве до температур 700—900° С или медленном охлаждении от 900—950° С образуется интерметаллид-ная о-фаза. Эта составляющая выделяется преимущественно по границам зерен, сообщая этим сталям исключительно высокую хрупкость и снижая их эрозионную стойкость. Однако а-фаза может вызвать и повышение сопротивляемости микроударному разрушению, если она имеет высокую степень дисперсности. В последнее время установлено, что а-фаза образуется почти во всех хромоникелевых аустенитных сталях, в том числе с присадкой молибдена и других легирующих элементов. При аустенизации хромоникелевые стали нагревали до более высоких температур (1000—1050° С), при которых хрупкая а-фаза растворяется. [c.208]

    В случае напыления алюминия на сталь может возникнуть некоторая диффузия интерметаллида под действием последую- [c.45]

    Однако субхлориды алюминия могут реагировать с никелем и железом, образуя интерметаллиды и хлористый алюминий  [c.14]

    Ре, Со, N1 и их соединения широко используют в качестве катализаторов. Губчатое железо с добавками—катализатор синтеза аммиака. Высокодисперсный никель (никель Ренея)—очень активный катализатор гидрирования органических соединений, в частности жиров. Никель Ренея готовят, действуя раствором щелочи на интерметаллид Ы1А1, при этом алюминий образует растворимый алюминат, а никель остается в виде мельчайших частиц. Этот катализатор хранят под слоем органической жидкости, в сухом состоянии он мгновенно окисляется кислородом воздуха. Со и Мп входят в состав катализатора, добавляемого к масляным краскам для ускорения их высыхания . [c.569]

    Данные физико-химических исследований исходных сплавов и выщелоченных катализаторов показывают [40], что платиноиды с алюминие.м образуют целый ряд интерметаллидов, причем сплавы, содержащие до 40% (ат.) Р1, выщелачиваются практически нацело. Количество остаточного алюминия не превышает 0,4% (масс.) от суммы компонентов в исходном сплаве. Лишь с появлением в составе сплава фазы Р1А1 выщелачиваемость резко снижается. Сплавы, содержащие 42 и 50% (ат.) Р1, выщелачиваются лишь на 40—50%. Данные рентгеноструктурного анализа показывают, что в этих сплавах фаза Р1А1 после обработки щелочью остается неразрушенной, в то время как Р1А1з, разрушаясь, образует скелетную платину. [c.45]

    Основная масса алюминия используется для получения легких сплавов — дюралюмина (94% А1, остальное Си, Mg, Мп, Ре и 81), силумина (85—90% А1, 10—14% 81, остальное N3) и др. Алюминий применяется, кроме того, как легирующая добавка к сплавам для придания им жаростойкости. Алюминий и его сплавы занимают одно из главных мест как конструкционные материалы в самолетостроении, ракетостроении, машиностроении и т. п. Коррозионная стойкость алюминия (особенно анодированного) значительно превосходит коррозионную стойкость стали. Поэтому его сплавы используются как конструкционные материалы и в судостроении. С -элементами алюминий образует химические соединения — интерметаллиды (алюми-ниды) М1А1, Ы1зА1, СоА1 и др., которые используются в качестве жаропрочных материалов. Алюминий применяется в алюминотермии для получения ряда металлов и для сварки термитным методом. Алюминотермия основана на высоком сродстве алюминия к кислороду. Например, в реакции, протекающей по уравнению [c.279]


    К числу наиболее характерных для А1 (П1) типов соединений относятся окись АЬОз, гидроокись А1(0Н)з и два ряда солей, где А1 (HI) выполняет катионную (например, А12(804)з, А1(МОз)з и т. д.) и анионную функции (М А1(0Н)4 — комплексные гидроксоалюминаты в растворах, М АЮг — алюминаты в твердой фазе). Известны также водородные соединения [2] полимерный гидрид (А1Нз) , комплексные алюмогидриды тииа М А1Н4 и многочисленные соединения с другими неметаллами и металлами (интерметаллиды). Рассмотрим наиболее важные соединения алюминия. [c.53]

    Химическая связь в интерметаллидах преимущественно металлическая. По внешнему виду они похожи на металлы. Твердость интерметаллидов, как правило, выше, а пластичность намного ниже, чем у образующих их металлов. Многие интер-металлиды нашли практическое применение. Например, сурьма-алюминий А15Ь, сурьма-индий 1п5Ь и другие широко используются как полупроводники. [c.226]

    Особенность строения этого соединения, обладающего ромбической симметрией, - наличие шестичленного кольца А1815 018, составленного из шести кремневокислородных радикалов 810з. Кольцеобразная структура конгломерата этих радикалов, связанных ионной связью с железом и алюминием, обеспечивает высокую и стабильную адгезию. Кроме того, это соединение, относящееся к классу силикатов, обладает значительной стабильностью свойств и препятствует образованию интерметаллида, замедляя дальнейшую диффузию алюминия в стальную поверхность при получении покрытия и водорода при наводороживании в сероводородсодержащей среде. Легирование алюминиевого покрытия кремнием позволило снизить толщину наносимого слоя для обеспечения защиты в наводороживающих сероводородсодержащих средах по сравнению с покрытием без легирующих элементов. [c.66]

    К химическому методу относится также контактное осажденгге металлов из раствора. Для листовых полуфабрикатов применяется горячий способ нанесения покрытий из расплавов цинка, олова, алюминия. Металлические покрытия должны обладать хорошей пластичностью. Пластичность покрытия определяется промежуточным слоем интерметаллидов, образующихся в результате реактивной диффузии. Для регулирования пластичности в расплавы вводятся добавки других металлов. В промышленности применяется также термодиффузионное поверхностное легирование сталей хромом, алюминием, кремнием и другими элементами с целью повышения их жаростойкости и коррозионной стойкости в агрессивных средах. Процесс проводится при высоких температурах из измельченной твердой или газовой фазы хлоридов или других соединений соответствующих металлов. [c.49]

    LI2 2, с Кремнием — силицид LieSi2. При растворении Л. в жидком аммиаке образуется амид Л. (раствор имеет синий цвет). С фосфором Л. непосредственно не реагирует. Со многими металлами Л. образует сплавы, сообщая им вязкость или твердость. С алюминием, цинком, магнием, кадмием, ртутью, таллием, свинцом, висмутом, оловом Л. образует интерметаллиды. См. также приложение. [c.23]

    Огневое рафинирование состоит из ряда последовательных операций, в каждой из которых удаляется одиа-две примеси. От железа черное олово очищают медленным охлаждением расплава и отфильтрованием выпадающих в осадок интерметаллидов, от меди — добавлением в расплав серы и отделением всплывающих ее сульфидов, от мышьяка и сурьмы — введением в расплав алюминия и удалением всплывающих интерметаллидов А15Ь и А1Аз, от свинца — присадкой хлористого олова, которое взаимодействует со свинцом, образуя удаляемый хлористый [c.223]

    В высокохромистых ферритных нержавеющих сталях (после закалки или нормализации с высоких температур) наиболее быстро растворяются в слабоокислительных условиях неравновесные обогащенные железом карбиды хрома, которые выпадают по границам зерен в процессе охлаждения. В дур-алюмине наибольшей скоростью растворения обладает интерметаллид СиАЬ, в то время как обедненный твердый раствор растворяется гораздо медленнее. Возникающие внутренние напряжения во всех случаях будут способствовать активации границ зерен. Внутренние напряжения могут усиливаться вследствие образования продуктов коррозии по границам зерен. Межкристаллитная коррозия гетерогенных сплавов может развиваться и в условиях, когда вся поверхность металла находится в активном состоянии, если имеется большая разница в равновесных потенциалах или поляризуемости структурных составляющих и физически неоднородных участков гетерогенного сплава. Она может медленно развиваться и при пассивнохМ состоянии зер на и границ зерен, если есть значительная разница в их скоростях растворения. [c.57]

    Как показало изучение фазового состава поверХ1Ности алюминия, легированного титаном, на его поверхности находятся интерметаллиды А1зТ1, препятствующие образованию оксидной пленки. В то же время такой алюминий оказался на1иболее пригодным для синтеза алюминийалкилов [22]. Далее было показано [23], что после хранения сухого алюминиевого порошка с добавкой титана на воздухе в течение 3 месяцев, степень превращения алюминия, например, в синтезе триизобутилалюминия, не понизилась. Даже интенсивная продувка порошка воздухом в течение суток не изменила его реакционной способности. [c.140]

    Лучшим видом алюминиевого порошка для получения высших алюминийалкилов можно считать алюминий, содержащий на поверхности интерметаллиды титана [22]. Сравнение скоростей образования триизогексилалюминия, диоктилалюминийгидрида и триоктилалюминия, синтезы которых проведены в сопоставимых условиях с использованием алюминия в виде ПА-4, измельченного в кавитационной мельнице и легированного титаном, показывает, что последний дает возможность увеличить скорость процесса в 1,3—1,6 раза. [c.164]


Смотреть страницы где упоминается термин Алюминий интерметаллиды: [c.55]    [c.57]    [c.410]    [c.425]    [c.66]    [c.82]    [c.410]    [c.300]    [c.102]    [c.486]    [c.15]    [c.78]    [c.47]    [c.302]    [c.412]    [c.202]    [c.490]    [c.66]    [c.13]    [c.397]   
Машинный расчет физико химических параметров неорганических веществ (1983) -- [ c.238 , c.240 , c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Интерметаллиды



© 2025 chem21.info Реклама на сайте