Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Форма молекул высокомолекулярных

    Функциональные производные адамантана вызывают всё возрастающий интерес исследователей, работающих в различных областях синтетической органической химии, химии высокомолекулярных соединений, фармакологии и других направлениях. Наиболее значимые успехи отмечены в области создания лекарственных средств, содержащих в своей структуре ядра адамантана. Это прежде всего антивирусные препараты ремантадин, адопрамин, мидантан, -биостимуляторы бромантан, кемантан и другие соединения различного терапевтического действия. Особенности геометрического строения молекулы адамантана (наличие в его структуре 3-х сконденсированных ненапряжённых циклогексановых колец, шарообразная форма молекулы), её липофильность, наличие нескольких реакционных центров, отличающихся друг от друга по реакционной способности и ряд других моментов открывает широкие синтетические возможности по использованию этого вещества для получения на его основе разнообразных функциональных производных. [c.89]


    Молекулы высокомолекулярных веществ могут быть линейными и разветвленными, причем длина молекулярных цепей может быть сравнительно большой — превышать 1 мкм. Именно линейной формой макромолекул определяются типичные свойства полимеров каучукоподобная эластичность, способность образовывать прочные пленки и нити, набухать, давать при растворении вязкие растворы и т. д. [c.426]

    В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линейного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому составу и стереометрии) может по своей форме приближаться к жесткой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок — глобулу (глобулярные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для линейных полимеров, которые отличают их от полимеров с иной геометрической формой молекул. [c.47]

    Из сказанного видно, что pH и введение электролитов влияют на заряд и форму молекул высокомолекулярных электролитов. Очевидно, эти факторы также должны влиять и на те свойства раствора, которые зависят от формы растворенных макромолекул. К таким свойствам относятся вязкость, осмотическое давление и объем студня набухшего высокомолекулярного вещества, если он не растворяется в данной среде. [c.471]

    ФОРМЫ МОЛЕКУЛ ВЫСОКОМОЛЕКУЛЯРНЫХ ВЕЩЕСТВ [c.181]

    В заключении данной главы сделана попытка дать в самой общей форме численную характеристику, по основным показателям, элементного состава и молекулярной структуры высокомолекулярных компонентов нефти (табл. 28). На рис. 15 приведены схематические модели их молекулярной структуры, показывающие элементы сходства и различия в архитектонике молекул высокомолекулярных углеводородов, смол и асфальтенов [27]. [c.112]

    Считается, что в аморфных структурах растворы высокомолекулярных соединений точно так же, как и молекулы в обычных жидкостях, имеют параметры ближнего и дальнего порядка. В ближнем порядке молекулы высокомолекулярных соединений ориентированы друг относительно друга параллельно, образуя достаточно плотные и хорошо спрессованные пучки или пачки молекул. Существование таких пачек в растворах высокомолекулярных соединений подтверждается пластичностью растворов полимеров, так как молекулы высокомолекулярных соединений могут по различному располагаться в таких пачках, да и пачки могут принимать различные формы. В нефтяных дисперсных системах структурные группы высокомолекулярных соединений, пучки или пачки, могут легко образоваться из макромолекул, имеющих регулярное строение полициклических и нормальных парафиновых углеводородов, нафтеновых и различных смешанных молекул, а также гетероатомных молекул. [c.59]


    По зависимости поверхностного давления от пЛощади пленки в кювете весов Ленгмюра можно определить размер и форму молекул, образующих пленку. В некоторых случаях подобные исследования позволили уточнить строение молекул, до этого остававшееся неясным. Именно с помощью этого метода выяснено строение ряда эфиров высокомолекулярных спиртов и других органических соединений. [c.134]

    Белки — высокомолекулярные полипептиды, представляют собой сложные биополимеры. Их различают по составу и форме молекул. [c.310]

    По числу аминокислотных остатков пептиды разделя ЮТСЯ иа ди, три, тетрапептиды, а также полипептиды Белки — высокомолекулярные полипептиды, представляют собой сложные биополимеры Их различают по составу и форме молекул [c.310]

    Органические вещества имеют обычно молекулярные кристаллические решетки, в которых можно определить группы атомов, образующих молекулу. Силы, действующие между молекулами, в большинстве случаев являются силами Ван-дер-Ваальса. По Эвансу и Гольдшмидту, в зависимости от формы молекул, можно все кристаллы (за исключением высокомолекулярных соединений) разделить на четыре большие группы. [c.69]

    Первые подобные расчеты были выполнены Кеезомом [48] в 1912 г. для жестких эллипсоидов вращения, но, так как результат оказался явно бесперспективным, эта задача не рассматривалась в течение последующих 30 лет, пока за нее не взялись химики, занимающиеся изучением полимеров. Причина заключалась в том, что осмотическое давление разбавленных растворов высокомолекулярных полимеров может быть выражено как функция концентрации с помощью уравнения в вириальной форме, а из осмотического второго вириального коэффициента может быть получена важная информация о форме молекулы полимера в растворе. Исихара и Хаясида [49] разработали общую теорию для второго вириального коэффициента жесткой выпуклой молекулы любой формы. Эта теория была скорректирована и развита Кихарой [50]. Ее результат удивительно прост. Пусть Ьа есть второй вириальный коэффициент модели жестких сфер, имеющих тот же объем на молекулу, что и выпуклая молекула, т. е. 6о в 4 раза больше действительного объема Л о молекул, как показано в уравнении (4.4). Тогда второй вириальный коэффициент можно записать как [c.190]

    С понижением температуры уменьшается потенциальная энергия парафиновой цепи, и она принимает растянутую, распрямленную, линейную форму. В этом состоянии молекулы высокомолекулярных парафинов склонны к образованию различных надмолекулярных структур. [c.23]

    Молекулярное просеивание . В зависимости от размера и формы молекул молекулярные сита 4А легко адсорбируют такие соединения, как вода, двуокись углерода, сероводород, сернистый ангидрид и все углеводороды, содержащие 1—2 углеродных атома в молекуле. Пропан и более высокомолекулярные углеводороды физически не могут адсорбироваться за исключением пропилена, который адсорбируется значительно прочнее и поэтому может проникать через поры адсорбента. Сита типа 5А. помимо соединений, адсорбируемых ситами 4А, могут адсорбировать алканы, алкены и спирты нормального строения до С22, а возможно, и выше. Молекулы разветвленного и циклического (нафтеновые и ароматические) строения не адсорбируются за исключением циклопропана. [c.205]

    Свойства высокомолекулярных веществ зависят не только от размера, ио и от формы молекул. [c.418]

    Полисахариды. Эти углеводы во многом отличаются от моно- и дисахаридов — не имеют сладкого вкуса, в большинстве нерастворимы в воде, они представляют собой сложные высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов, затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов. Важнейшие представители полисахаридов — крахмал и целлюлоза (клетчатка). Их молекулы построены из звеньев -СбНюОб-, являющихся остатками шестичленных циклических форм молекул глюкозы, потерявших молекулу воды поэтому состав и крахмала, и целлюлозы выражается общей формулой (СеНюОа) . Различие же в свойствах этих полисахаридов обусловлено пространственной изомерией образующих их моно-сахаридных молекул крахмал построен из звеньев а-, а целлюлоза — /3-формы глюкозы. [c.582]

    Не менее убедительные доказательства были получены при сопоставлении физических свойств высокомолекулярных членов гомологического ряда и более низкомолекулярных представителей того же ряда, обладающих заведомо цепным строением. При этом по мере снижения молекулярных масс первых и увеличения длины молекулы вторых наблюдалось сближение их свойств без резких переходов при существенных изменениях в форме молекулы плавность перехода должна была непременно нарушиться. Другими словами, высоко-, средне- и низкомолекулярные представители составляют единый гомологический ряд, члены которого имеют одинаковое цепное строение. [c.17]

    Известно, что высокопарафинистые и парафинистые нефти в составе твердых углеводородов содержат высокомолекулярные нормальные алканы с температурой плавления выше 60 и даже 70 °С, что соответствует Сз2 и выше. Независимо С1 того, содержатся ли нормальные алканы в легких или тяжелых фракциях, они при определенных условиях в силу структурной формы молекулы должны вступать в комплекс с карбамидом. [c.14]


    Подобные нитевидные молекулы могут располагаться параллельно, например, в волокнах, переплетаться друг с другом и быть свернутыми в клубок, что и наблюдается в. каучуке. Такая структура характерна для полиэтилена, полипропилена, целлюлозы, полиэфиров, полиамидов и многих других высокомолекулярных соединений, используемых для получения волокон, пленок, пластмасс, резины и пр. Полимеры с такой формой молекул прочны, эластичны, способны растворяться и, как правило, могут плавиться. [c.534]

    Из высокомолекулярных соединений нефти только парафиновы-е углеводороды по форме молекулы соответствуют первому (парафины нормального строения) или второму (разветвленные парафины) типу. Остальные высокомолекулярные соединения нефти, как углеводороды, так и гетероорганические соединения, нельзя отнести ио форме ни к одному из трех приведенных выше геометрических типов молекул. Наиболее правильное представление о форме молекул этих соединений может дать сравнение их с гроздью винограда [5]. Поэтому для характеристики формы молекулы высокомолекулярных соединений нефти, за исключением парафинов, следует ввести четвертый тип — гроздьевидный. Эта форма окажется, по-видимому, более приемлемой, чем три вышеупомянутые, также и для характеристики молекул таких высокомолекулярных природных соединений, как лигнин, природные смолы и др. Со временем появятся, вероятно, и синтетические высокомолекулярные соединения, приближающиеся по структуре молекул к гроздьевидиой форме. [c.14]

    Ценность высокомолекулярных соединений определяется в первую очередь размерами и особенностями строения молекул этих веществ, и разработка научных проблем, связанных с исследованием природы высокомолекулярных соединений, является одной из основных задач современной химии и физики. Эти вопросы тесно связаны с исследованием растворов высокополиме-ров, так как почти все известные методы определения размеров и формы молекул высокомолекулярных веществ основаны на исследовании растворов этих соединений. С другой стороны, растворы высокомолекулярных соединений представляют непосредственный практический интерес. Дело в том, что переработка и применение значительного числа полимеров возможна только путем их предварительного растворения. Поэтому возможность растворить полим ) и получить растворы с необходимыми свойствами часто определяет возможность технического использования полимера. [c.5]

    Уравнения (VIII, 6) и (VIII, 7) имеют очень большое значение в коллоидной химии, так как позволяют па основании измерений коэффициента диффузии D определить радиус взвешенных коллоидных частиц сферической формы, а также величину молекул высокомолекулярных соединений. Для частиц или макромолекул несферической формы выражение 6ят)г в уравнении (VIII,7) заменяется более сложным. [c.301]

    Как показывает опыт, свойства высокомолекулярных соединений, а также их растворов определяются не только химическим составом, но н размерами и формой макромолекулы. От величины и формы молекул соединений зависят прочность, гибкость, эластичность, устойчивость к многократным деформациям и ряд других важнейших технических свойств изделий, получаемых из них, при сраннительно невысокой плотности. [c.327]

    Из вышеприведенного перечня высокомолекулярных соединений можно видеть, что соединения этого класса обладают самыми различными свойствами. Так, натуральные и синтетические каучуки высокоэластичны (обратимо растягиваются на сотни процентов), а большинство синтетических смол жестки, как стекло. Некоторые высокомолекулярные соединения растворяются в различных растворителях и дают ценнейшие для промышленности растворы в виде лаков, клеев и пленкообразо-вателей, другие же не растворяются ни в чем. Одни обладают кислотостойкостью или диэлектрическими свойствами, у других этого нет и т. д. В настоящее время установлено, что свойства высокомолекулярных веществ зависят от условий их получения, температуры испытания, химического строения, размеров и формы молекул, агрегатного состояния, интенсивности меж-молекулярных связей и других факторов [c.166]

    Классифицируя растворы неэлектролитов, принимают во внимание характер межмолекулярных взаимодействий в системе, а именно природу и интенсивность сил притяжения, а также размеры и форму молекул, передаваемых потенциалом отталкивания. Учет размеров молекул оказывается чрезвычайно существенным для объяснения свойств растворов высокомолекулярных веществ. Большое различие в размерах молекул растворителя и растворенного вещества заметно влияет на энтропийные характеристики раствора. Играют роль специфические черты длинных молекул, связанные с внутренними вращениями и выражающиеся в гибкости цепи, в наличии множества возможных конфигураций цепи. Теория растворов высокомолекулярных веществ предствляет собой относительно самостоятельную область теории растворов. [c.396]

    Явление двойного лучепреломления в потоке заключается в том, что некоторые жидкости (наттример, органические вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию. Особенно сильно двойное лучепреломление ггроявлястся при течении золей с палочкообразными час1и-цами и растворов высокомолекулярных соединепий. [c.481]

    Исключительную ценность имеет статическое термодиффузионное разделение жидких смесей как метод анализа сложных углеводородных фракций, в частности высокомолекулярных [27—29]. Поскольку термодиффузионпое разделение основывается па различии формы молекул, этот процесс идеально применим для определения структур, содержащихся в сложных смесях. Было исследовано [12] разделение в одиночной статической колонне описанного выше типа трех масляных фракций, а именно мидконтинепт-ского нейтрального дистиллята, его фурфурольного экстракта и рафината. [c.36]

    Аналогичная картина наблюдается нри смешении южно-тамбаевской и западно-останинской нефтей. Добавление 10 % западно-останинской нефти вызывает увеличение вязкости нри 15 и 20 °С. Выше 25 °С вязкость указанной смеси мало отличается от вязкости южно-тамбаевской нефти. Это, видимо, связано с тем, что с понижением температуры уменьшается потенциальная энергпя парафиновой цепи и она принимает растянутую линейную форму. В таком состоянии молекулы высокомолекулярных парафинов склонны к образованию различных надмолекулярных структур. Повышение температуры приводит к росту энергии теплового движения, уменьшению энергии между молекулами и, как следствие, разрушению ассоциатов. [c.111]

    Белки как вещества высокомолекулярные образуют коллоидныё растворы. Растворимость белков в воде определяется наличием гидрофильных групп (несущйх заряд или незаряженных) в аминокислотах, входящих в состав белка Имеют также значение наличие у моле кул одноименного суммарного Заряда и форма молекул (отношение длинной й короткой осей). Воздействия, влияющие на гидратацию, заряд или форму белковых молекул, изменяют и растворимость. К числу таких воздействий относится, в частности, добавление в раствор солей. [c.24]

    Полиакриламид—растворимый в воде полимер, содержащий в своей цепочечной молекуле ионогенные группы. При его диссоциации образуются высокомолекулярный поливалентный анион и много простых маловалентных катионов, поэтому такие вещества называют полиэлектролитами. Действие ПАА объясняют адсорбцией его молекул на хлопьях гидроокиси, образующейся при гидролизе коагулянтов. Из-за вытянутой формы молекулы адсорбция происходит в разных местах несколькими частицами гидроокиси, в результате чего последние оказываются связанными вместе [66]. [c.93]


Смотреть страницы где упоминается термин Форма молекул высокомолекулярных: [c.14]    [c.15]    [c.418]    [c.349]   
Курс коллоидной химии (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Форма молекул



© 2025 chem21.info Реклама на сайте