Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы измерения текстуры поверхност

    Интересно отметить, что обычно макроскопические методы используют для измерений шероховатости неметаллических поверхностей (дорожных покрытий, абразивов, поверхностей со специальным рифлением). Большой интерес представляет возможность связать макро- и микроскопические методы путем измерения тонкой текстуры с помощью частиц абразивного износа. Б связи с тем, что массу этих частиц можно определить радиоактивными методами, микрошероховатость соответствующей поверхности можно измерить с большой точностью (до 1 мкм). [c.41]


    Точность измерения профиля поверхности с помощью описанного прибора достаточна для практического использования. Примеры полученных профилей различных поверхностей будут описаны ниже. Оценка профиля поверхности зависит в основном от степени выявления его особенностей. Ниже приведены два метода обработки профилограмм, позволяющие более полно выявить особенности текстуры поверхности. [c.42]

    Если одна или обе поверхности испытываемых образцов не являются абсолютно гладкими, что характерно для реальных образцов, то при определении толщины образца из слоистого пластика, даже если его поверхность предварительно зашкурена, с помощью технического микрометра можно измерить только толщину по пикам поверхностного профиля, а не по среднему уровню поверхности, который принимается во внимание при расчетах. Поэтому получаемые данные значительно завышены и типичная ошибка при измерении толщины образца из листового стеклопластика с хаотическим распределением волокон с зашкуренной поверхностью составляет 0,2 мм, что при толщине листа 5 мм составляет 4%. При вычислении модуля упругости при изгибе экспериментально определенная л<есткость делится на толщину в кубе, и, следовательно, при этом ошибка при измерении толщины, равная 4%, приводит к ошибке при определении модуля упругости почти в 12%. Таким образом, рассчитанный модуль упругости имеет заниженное значение вследствие завышения толщины при измерении. Влияние только одного этого фактора объясняет большинство различий экспериментальных и расчетных данных на рис. 4.5. В связи с тем что не удается усовершенствовать методы измерения средней толщины листовых материалов с волокнистым или тканевым наполнителем, неизбежно уменьшается точность экспериментального определения модуля упругости при изгибе. Наиболее остро эта проблема стоит при определении модуля упругости при изгибе тонких листовых материалов с грубой текстурой, напрнмер, при использовании в качестве наполнителя тканого ровинга. Листы, отвержденные между плитами пресса, в соответствие со стандартами Великобритании В8 3552 [12] и В5 3496 [c.205]

    Глава 1 представляет собой детальный исторический обзор развития представлений о трении и смазке, начиная с ранних исследований до настоящих дней. В главе 2 рассмотрены основополагающие принципы трения. Глава 3 посвящена способам измерения текстуры поверхности. Главы 4, 8, 9 и 10 касаются проблем гистерезиса и адгезии и механизма износа легкодеформируемых поверхностей. Теории и экспериментальные данные указывают па вязкоупругую природу трения эластомеров. Главы 5, 6 и 7 касаются взаимодействия поверхностей в условиях смазки, делается упор на эласто-гидро-динамическое взаимодействие, имеющее место при трении эластомеров по грубым подложкам. В главе И обсуждаются некоторые методы испытаний, применяемых в различных лабораториях. Хотя весь текст представлен в систематизированном виде, главы во многом независимы и могут изучаться самостоятельно. В книге сделана попытка изложить простым языком сложные теоретические представления о поведении материалов при сухом трении и со смазкой и иллюстрировать это примерами из повседневной жизни. [c.5]


    Следует различать макроскопические и микроскопические методы оценки текстуры поверхности. Для большинства поверхностей поел тех слогпческой обработки применяются макроскопические методы, почти полностью основанные на механических измерениях. Физиков и физикохимиков удовлетворяют лишь тонкие анализы поверхностей и часто даже на молекулярном уровне. Для таких анализов применяют обычно оптические методы. [c.39]

    Было сделано несколько других попыток разработать фотометрический метод измерения поверхности, например отбор проб пыли на бумажные фильтры. с помощью ручного насосика с фотоэлектрическим определением количества осадка на фильтре . Метод оказался особенно удобным для черной пыли угольных щахт (в этом случае из.меряется поглощение света осадком), однако позднее он был раскритикован самим автором 2. Помимо того, что на фильтрах осаждаются все частицы независимо от их размера, соотнощение между показаниями денситометра и количеством частиц недостаточно определенно. Эти недостатки были рассмотрены Дейвисом и Эйлуордом , исследовавшими пригодность различных фильтровальных бумаг (ватман № 2 и эспарто) для указанных целей. Бумага эспарто, благодаря равномерной текстуре, значительно лучще других сортов. Определение поверхности осадка пыли, на основании фотометрических данных представляет значительные трудности из-за различной формы и. размера частиц, их перекрывания в осадке, а также проникания в глубь фильтровальной бумаги. Предложенная Дейвисом и Эйлуордом формула пригодна для очень тонкой пыли, но требует введения эмпирической поправки, при применении к грубым пылям. Математическое соотношение между поверхностью и числом частиц было выведено также Доуэсом В дальнейшем развитии теории он учел расхождения между теорией и опытом, наблюдавшиеся как им самим, так и другими исследователями. [c.338]

    Наиболее простым из перечисленных в предыдущем разделе методов измерения и регистрации текстуры поверхности является про-филометрия, осуществляемая с использованием, например, прибора, показанного на рис. 3.1. Прибор состоит из платформы 1, которая может перемещаться горизонтально со скоростью 5 мм/с по направляющим из тефлона относительно основания, устанавливаемого на исследуемую поверхность с помощью трех регулировочных винтов 9. Платформа приводится в движение от реверсивного мотора через зубчатую рейку и шестерню. Алюминиевый блок, смонтированный на двойном пружинном кронштейне (это устройство обеспечивает вертикальное перемещение блока без трения под действием пружины), имеет в нижней части наклонную выступающую иглу, которая ощупывает анализируемую поверхность нри перемещении платформы 1. Верхняя часть блока посредством гибкой связи соединена с сердечником линейного дифференциального трансформатора 3. Переключатель 7 реверсивного электромотора и источник постоянного тока 4 для трансформатора расположены в одном узле. Сигнал с трансформатора, обусловленный положением сердечника, подается на вход осциллографа. За счет усиления сигнала люжно достичь большого увеличения текстуры поверхности, однако при слишком высокой чувствительности прибора необходимо применять специальные фильтры для устранения низкочастотного дрейфа и удержания кривой на осциллографе в пределах диаграммы. [c.41]

    Использование в лабораторных условиях простых моделей для изучения сложных явлений стало осуществляться сравнительно недавно [3]. Интересно заметить, что в комплект лаборатории пневматические шины не входят, но динамические явления, которые имеют место при качении, воспроизводятся отдельными приборами. Так, прибор для изучения поведения сжатых пленок (рис. 6.17) имитирует выдавливание воды из передней части зоны контакта при качении шины, причем важным элементом здесь является варьируемая текстура поверхности. Прибор для из5П1ения ударного воздействия имитирует динамическое ударное нагружение протектора при наезде на дорожные неровности в сухих или влажных условиях. Стандартный маятниковый прибор дает возможность оценить сцепление в задней части зоны контакта шины при качении. Имеются два метода оценки геометрических особенностей дорожной поверхности с использованием прибора для измерения профиля поверхности (см. рис. 3.1) и прибора для измерения скорости истечения воды. Последний позволяет измерять скорость истечения жидкости из контейнера, не содержащего дна и прижатого к поверхности с данной текстурой. Скорость истечения жидкости зависит от геометрии пустот между выступами и расстояния между ними. Более подробно с таким прибором можно ознакомиться в работе [3]. При использовании комплектной лаборатории, имеется два преимущества, во-первых, [c.252]

    Имеется, по-видимому, несколько причин сложной зависимости адгезионной прочности от деформации системы подложка—покрытие. Одна из таких причин — упрочнение пленки при деформации — была упомянута выше. Влияние этого фактора тем более вероятно, что на поверхности подложки удалось обнаружить обрывки пленки. Следовательно, прочностные свойства пленки могут внести весьма заметный вклад в адгезионную прочность, тем более, что при измерении адгезионной прочности методом вырыва направление действия внешней нагрузки совпадает с направлением ориентационного упрочнения. Во-вторых, при растяжении системы подложка—покрытие может проявляться эффект механического заклинивания. Дело в том, что при деформации растяжения происходит сужение многочисленных бороздок и канавок, расположенных на поверхности подложки вдоль оси. детали рельефа поверхности, придающие ей так называемую волокнистую текстуру, вызваны волочением и другилш технологическими про- [c.154]


    Кордес, Гюнтер, Бюхс и Гёльтнер [25] нашли, что двулучепреломление волокон найлон 6, измеренное компенсационным методом, как для тонких элементарных волокон, так и для толстой щетины обычно положительно и имеет небольшую величину (до - -0,005), что указывает на низкуку степень ориентации обычного тина более высокий показатель преломления вдоль оси волокна свидетельствует о тенденции осей молекул располагаться в этом направлении. Но иногда наблюдается и отрицательное двулучепреломление, указывающее на небольшую степень ориентации в противоположном направлении обычно это имеет место при низкой скорости приема нити из фильеры или может быть вызвано неравномерным натяжением расплава полимера при выходе из фильеры. У щетины двулучепреломление поверхности больше, чем двулучепреломление внутренних слоев. (В той же работе сообщается, что поперечные сечения волокон дают такую же интерференционную картину в сходящемся пучке, как и одиночные двухосные кристаллы, т. е. оптические свойства не имеют цилиндрической симметрии эти явления, по-видимому, связаны сдвижением микротомного ножа и поэтому не могут служить надежным показателем структуры волокна.) Престон [36] также наблюдал поверхностные явления в поперечном сечении невытянутых элементарных нитей найлон 66 двулучепреломление в направлении по касательной положительно (показатель преломления больше для направления поляризации по касательной, чем в радиальном направлении) это позволяет предположить, что зигзагообразные цепи и группы С=0 молекул стремятся расположиться параллельно поверхности волокна, что совпадает с характером текстуры в прессованных и вальцованных пленках [10]. [c.254]


Смотреть страницы где упоминается термин Методы измерения текстуры поверхност: [c.338]    [c.265]    [c.338]   
Трение и смазка эластомеров (1977) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность, методы измерения

Текстура



© 2025 chem21.info Реклама на сайте