Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод анализа измерений фотометрический

    Коэффициент поглощения г называют молярным, если концентрация веш,ества выражена в моль/л. Он представляет собой оптическую плотность 1 М раствора при длине кюветы 1 см. Величина 8 измеряется в л/(моль-см), но принято приводить значение 8 без указания единиц измерения. Если концентрацию вещества выражают в процентах, то вместо 8 используют удельный коэффициент поглощения, численно равный оптической плотности 1%-ного раствора при /=1 см, и обозначают E u Коэффициент поглощения обычно используют для сравнительной оценки чувствительности фотометрических реакций и методик чем выше значение 8, тем меньшую концентрацию вещества можно определить. Постоянство значений г при разных концентрациях вещества обычно свидетельствует о соблюдении закона поглощения в определяемом интервале концентраций, т. е. е не зависит от концентрации и длины кюветы и характеризует степень поглощения электромагнитного излучения. Метод анализа называют фотометрическим, когда измеряют степень поглощения веществом излучения сравнительно широкого участка спектра, выделенного с помощью светофильтров, с помощью фотоэлектроколориметров. [c.23]


    Методы, основанные на взаимодействии излучения с веществом. Большое значение имеют различные оптические методы анализа. Измерение поглощения света является основой фотометрии. Различают две группы фотометрических методов колориметрию и спектрофотометрию. В колориметрии сравнивают окраску исследуемого раствора с окраской стандартного раствора. В спектрофотометрии определяют спектр поглощения вещества (раствора) или измеряют светопоглощение при строго определенной длине волны. Как чисто физический метод, фотометрия применяется для анализа растворов красителей, для определения окрашенных окислов азота в газах и т. п. Измерение поглощения в ультрафиолетовой и в инфракрасной частях спектра позволило распространить эти методы на многие бесцветные растворы, не поглощающие света в видимой области. Таким путем анализируют сложные системы, содержащие органические вещества, например различные фракции перегонки нефти, витамины и др. физиологически активные вещества. Измерение поглощения в инфракрасной области используется, кроме того, для определения мути в растворах, пыли в газах. [c.18]

    В книге изложены теоретические основы и практические приемы фотометрических методов анализа (спектрофотометрии, фотоколориметрии, колориметрии) описаны общие условия фотометрического определения веществ, аппаратура и методы измерения светопоглощения растворов в видимой и ультрафиолетовой областях спектра. Приведены практические работы, иллюстрирующие применение фотометрических методов к анализу примесей и основных компонентов растворов и твердых веществ. Специальные главы руководства посвящены спектрофотометрическому определению состава и констант устойчивости окрашенных соединений, математической обработке экспериментальных данных и некоторым расчетам, встречающимся в практике фотометрического анализа. В приложении приведена библиография фотометрического определения различных элементов. Включено около 50 задач с ответами для самостоятельных расчетов. [c.2]

    Эта величина естественно меньше Лтах — оптической плотности в области длины волны максимального поглощения. Различие в величинах Л и Л max Т6М больше, чем больше Лта , т. е. чем выше концентрация окрашенного соединения. Поэтому и при таких измерениях наблюдаются отрицательные отклонения от основного закона светопоглощения. Переход от фотоколориметрических методик к спектрофотометрическим эквивалентен переходу к монохроматическим источникам излучения и существенному снижению систематических ошибок в фотометрических методах анализа. [c.48]


    Фотометрический анализ— совокупность методов анализа, основанных на измерении интенсивности пропускания, поглощения или рассеяния ИК-, видимого и УФ-излучения различными веществами. См. Спектрофотометрия, Колориметрия. [c.333]

    Фотометрические методы анализа основываются на непосредственном измерении абсорбции Л = lg(/o//) и определении неизвестной концентрации с помощью уравнения Бугера — Ламберта — Беера. Приборы, измеряющие абсорбцию, называются фотометрами. [c.381]

    Главным преимуществом фотометрического метода является облегчение условий работы аналитика в связи с устранением утомляемости глаза. Кроме того, применение фотоэлементов в некоторых случаях дает возможность автоматизировать контроль производства. Наконец, фотоэлементы широко применяются для фотометрических измерений в невидимых участках спектра (в ультрафиолетовой и инфракрасной областях). Это в значительной мере расширило возможности фотометрического метода анализа. В качестве примера можно указать на определение воды в некоторых органических жидкостях (ацетон, спирт) [1]. [c.194]

    В кинетических методах анализа для наблюдения за скоростью реакции часто используют фотометрические методы. Техника измерений сводится к тому, что в момент начала реакции включают секундомер, затем помещают раствор в кювету прибора и через определенные промежутки времени записывают значения оптической плотности. Полученные данные обрабатывают одним из принятых в практике методов (см. разд. 25.1), после чего рассчитывают результат. Для измерения оптической плотности может быть использован любой фотоэлектроколориметр, имеющий подходящий для данной реакции светофильтр. [c.312]

    Пламенно-фотометрический метод анализа, или фотометрия пламени [8, 16—19], относится к одному из видов эмиссионного спектрального анализа. Метод основан на измерении фотоэлектрическим способом интенсивности излучения атомов элементов, возбуждаемых в пламени. [c.81]

    При оптических (колориметрических, фотометрических, фотоэлектрических) методах анализа используют приборы, в которых визуально или с помощью измерительного устройства (диафрагма, реостат и т.п.) устанавливают интенсивность поглошения света. Анализ основан на переводе определяемого элемента в окрашенное соединение и измерении оптической плотности полученного раствора. Затем по калибровочному графику определяют состав раствора. [c.20]

    Приборы, снабженные устройством для спектрального разложения люминесцентной эмиссии, имеют также светофильтры, чтобы устранить попадание на щель спектрографа рассеянного света ртутной лампы. Возможность отделить тот участок спектра, который возбуждает люминесценцию, является преимуществом этого метода анализа. Метод основан на том, что вещество сначала поглощает свет, а затем часть поглощенного света вещество отдает в виде люминесценции. Таким образом, в первой части люминесцентный метод аналогичен фотометрическому в обоих случаях реакция тем чувствительнее, чем сильнее поглощает свет определяемое вещество. Коэффициент превращения энергии поглощенного света в энергию люминесцентной эмиссии не может быть больше единицы. Поэтому при прочих равных условиях интенсивность сигнала (на 1 г-моль вещества) при люминесцентном анализе неизбежно будет меньшей, чем при фотометрическом анализе. Однако чувствительность каждого метода зависит не только от интенсивности сигнала, но и от значения фона (точнее, от колебаний или флуктуаций фона). В фотометрическом методе сигнал (поглощение света) измеряется на интенсивном фоне потока света той же длины волны. Это существенно уменьшает надежность точного измерения слабого поглощения. В люминесцентном же анализе в принципе можно уменьшить фон почти до нуля может влиять лишь комбинационное рассеяние света молекулами растворителя. Таким образом, возможность устранения фона при измерении люминесценции повышает чувствительность метода. [c.161]

    Изучение влияния примесей при пламенно-фотометрическом методе анализа путем измерения ионизации пламени [c.25]

    Изучение влияния примесей при пламенно-фотометрическом методе анализа путем измерения ионизации пламени (Я. Э. Шмуляковский, А. Н. Александров, К. И. Таганов). .. 2  [c.231]

    Воспроизводимость абсолютных фотометрических методов анализа, в которых оптическая плотность или пропускание) исследуемого или стандартного раствора измеряется относительно чистого растворителя или раствора холостогоъ опыта, обусловлена погрешностью измерения аналитического сигнала А, Т). [c.187]

    Фотометрические методы анализа кремнийорганических соединений, основанные на измерении оптической плотности жидкостей, нашли большое практическое применение в научно-исследовательских и заводских лабораториях. Основными отличительными чертами этих методов являются простота, быстрота, и возможность определения весьма малых количеств различных кремнийорганических соединений. [c.357]


    Фотометрический метод анализа основан на измерении количества лучистой энергии, поглощенной окрашенными растворами в видимой или ультрафиолетовой части спектра. Во многих случаях существует пропорциональная зависимость между количеством поглощенного света и содержанием вещества в единице объема раствора. [c.258]

    Красный нитрито-изомер комплекса [ o(NHз)5(N02)] + менее устойчив и медленно превращается в желтый нитро-изомер. Переход ускоряется при нагревании или под действием хлороводородной кислоты. Фотометрическое измерение скорости превращения красного изомера в желтый показало, что этот процесс перехода является реакцией первого порядка, как это и ожидается для внутримолекулярных перегруппировок (в данном случае — изменение вида донорного атома лиганда N0 ). хотя для точного доказательства недостаточно результатов одного метода анализа [86]. [c.349]

    Точность метода. Точность метода определяется действием следующих факторов постоянством источника возбуждения (электрической дуги, искры, пламени горелки), величиной ошибки фотометрического измерения, а в случае спектрографии — гомогенностью фотографической эмульсии. Кроме того, очень большое значение имеет отбор пробы для анализа. Если анализируют твердое вещество, то лишь очень незначительная часть его подвергается исследованию и очень важно, чтобы эта часть правильно отражала средний состав анализируемой пробы. Поскольку определение сводится к сравнению со стандартным образцом, состав которого часто определяют предварительно химическими методами анализа, точность спектрографического определения зависит в таких случаях от точности этих химических методов анализа. [c.581]

    Наиболее удобно применять для измерения скорости реакции фотометрический метод анализа и тогда [c.83]

    Если же метод анализа базируется на измерении скорости образования продукта реакции, то отличительными спектральными свойствами должен обладать именно продукт. Такому требованию удовлетворяют многие гидролазы, особенно те из них, которые не обладают строгой специфичностью к некоторым элементам структуры субстрата. Синтез хромогенных субстратов некоторых протеаз и фосфатаз, например, позволил использовать метод остановленного потока для изучения этих ферментов. Ионные реакции, особенно протонирование, протекают, к счастью, очень быстро. Поэтому для изучения струйным методом реакций, протекающих с образованием или потреблением протона, во многих случаях можно использовать индикаторные красители. Потенциальные возможности этого метода значительно расширяет так называемый метод закалки реакции в потоке . В этом методе растворы фермента и субстрата смешиваются так же, как и при использовании других струйных методов, но реакционная смесь поступает затем во второй смеситель (а не в фотометрическую ячейку), где она смешивается с химическим закаливающим реагентом (часто им служит сильная кислота),который очень быстро останавливает реакцию. При постоянной скорости потока время реакции в этом случае зависит только от расстояния между двумя смесителями. Закаленную реакционную смесь можно далее проанализировать любым подходящим методом. Этот способ [8—10] дает возможность изучать многие ферментативные реакции, для которых другие струйные методы оказываются неприменимыми. [c.184]

    Высокая воспроизводимость определений может быть обеспечена только в том случае, если при выборе раствора сравнения (Со, Ло) учитывается также и чувствительность измерений фотоколориметров и спектрофотометров. Этот вопрос явился предметом систематических исследований [127—130] при разработке экспрессных дифференциальных фотометрических методов анализа фосфора и алюминия в минеральных удобрениях, фосфатных растворах, апатитах. Показано [127—130[ (рис. 3.9)  [c.87]

    Инструментальные методы анализа — количественные аналитические методы, для выполнения которых требуется электрохимическая оптическая, радиохимическая и иная аппаратура. К И, м. а. обыч1ю относят 1) электрохимические методы— потенциометрию, полярографию, кондуктометрию и др. 2) методы, основанные на испускании или поглощении излучения,— эмиссионный спектральный анализ, фотометрические методы, рентгеноспектральный анализ и др. 3) масс-спектральный анализ 4) методы, основанные на измерении радиоактивности. Имеются и другие И. м. а. [c.57]

    Ошибка измерения фотометрического метода выше, чем ошибка гравиметрии и титрования (ср. примеры [4.4] или [4.5]). Поэтому фотометрию применяют главным образом для определения малых концентраций, так как в этой области большая ошибка не имеет такого значения, как при анализе больших концентраций. В этой области применения фотометрия работает тем лучше, чем большая часть цветообразуюш их реакций дает очень Мнтенсивно окрашенные соединения. [c.73]

    Абсорбционный спектральный анализ в ультрафиолетово видимой и инфракрасной областях спектра. Различают спектр фотометрический и фотоколориметрический методы. Спектроф тометрический метод анализа основан на измерении поглощен света (монохроматического излучения) определенной длины во. ны, которая соответствует максимуму кривой поглощения вещее ва. Фотоколориметрический метод анализа основан на измерен светопоглощения или определения спектра поглощения в пр) борах—фотоколориметрах в видимом участке спектра. [c.328]

    Методы, основанные на измерении величин, характеризующих световое излучение, путем преобразования их в электрический сигнал и обработки его вторичными блоками, имеют широкое распространение, поскольку они хорошо вписываются в технологический процесс. К таким методам можно условно отнести фотометрический, деиситометрический, колориметрический и некоторые разновидности поляризационного и спектрального методов. Фотометрический метод предполагает измерение вторичной освещенности, яркости, светового потока или интенсивности светового излучения, полученного после взаимодействия с контролируемым объектом. Использование той или иной физической величины зависит от конкретной реализации метода, выбранной оптической системы и первичного измерительного преобразователя. Деиситометрический состоит в том, что измеряется оптическая плотность или коэффициент пропускания. Поляризационный отличается использованием поляризованного света и анализом поляризации прошедшей компоненты. Колориметрический заключается в анализе цветовых составляющих света или их отношения. При реализации этих методов основной процесс измерения или преобразования может быть сведен во многих случаях к фотометрическому, поэтому рассмотрим его как основной вариант построения аппаратуры и отметим особенности в реализации других методов. [c.251]

    В фотометрическом анализе определяемое вещество переводят в окрашенное соединение, после чего измеряют светопогло-щение раствора. В зависимости от способа измерения светопо-глощения различают несколько методов фотометрического анализа. Визуальное сравнение интенсивности окраски по отношению к известному стандарту называют колориметрическим анализом. Если для измерения светопоглощения применяют фотоэлемент со светофильтром, то прибор называют фотометром или электрофотоколориметром (ФЭК), а метод анализа — фотометрическим. Наиболее точные результаты, особенно при анализе сложных смесей, получают на спектрофотометрах, когда светопоглощение можно измерять в узком участке спектра такой метод называется спектрофотометрическим. [c.9]

    СПЕКТРО ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ — количественный анализ, основанный на переведении определяемого вещества действием реактива в поглощающее свет соединение, содержащееся в растворе, в измерении интенсивности поглощения света с помощью спектрофотометров один из фотометрических методов анализа. Спектрофотометры (ряс.) дают возможность выделять узкий диапазон длин волн, что отличает С. а. от фотометрического анализа, осуществляемого с помощью гл. обр. фильтровых фотометров, к-рые выделяют более широкий участок спектра. В связи с этим чувствительность и точность С. а. выше, чем фотометрического анализа (влияние иоглорон-пих ионов уменьшается). С. а. расширяет возможность определения мн. веществ, поглощающих свет в ультрафиолетовой, видимой и близкой инфракрасной областях спектра. Он позволяет измерять оптическую плотность на любом участке длин волн (в пределах рабочей области спектра спектрофотометра), вследствие чего с его помощью можно определять разные компоненты в смеси даже при наложении их спектров. Так, если в растворе содержится п веществ, характеризующихся полосами свето- [c.424]

    Колориметрическое и спектрофотометрическое " определение состоит из двух этапов переведения определяемого компонента в соединение, поглощающее свет, и измерения оптической плотности раствора. Полнота переведения определяемого компонента в соединение, поглощающее свет, зависит от концентрации реагирующих компонентов. Для образования прочного малодиссоции-рованного соединения не требуется большого избытка реактива в этом случае для уверенности в полноте связывания определяемого компонента достаточно прибавить полуторный избыток реактива. Однако в фотометрических методах анализа часто применяют сравнительно малопрочные комплексные соединения роданидные, галогенидные и др. В таких случаях степень связывания в сильной мере зависит от концентрации избытка реактива. Степень связывания определяемого иона в поглощающее свет соединение ХК можно характеризовать отношением [ХР] [X]. Реакцию образования соединения поглощающего свет схематически можно изобразить следующим образом  [c.95]

    Количественный люминесцентный анализ (или так называемая флуориметрия) основан на предполагаемой зависимости между интенсивностью люминесценции и концентрацией анализируемого вещества. При флуориметрических определениях исходят из пропорциональности интеноивности люминесценции количеству поглощающих и излучающих центров и доле поглощенного света. Флуориметрические методы принципиально не отличаются от фотометрических и являются разновидностью оптических методов анализа, хотя и имеют свои специфические особенности. Как правило, чувствительность флуориметрических методов значительно выше фотометрических. Главным условием успешного применения люминесцентных реакций для количественного анализа является достаточно полное превращение поглощенной энергии в люминесцентное излучение. Флуориметрические измерения выполняются как визуально, так и с помощью объективных методов регистрации возникающего излучения. [c.150]

    Все эти методы иногда объединяют в одну группу фотометрических методов анализа, хотя они и не имеют общего принципа. Фотоколориметрия и спектрофотометрия основаны на взаимодействии излучения с однородными системами, тогда как турбидиметрия и нефелометрия — на взаимодействии с дисперсными системами (нефе-лометрический метод — на измерении рассеянного света, турбиди-метрический — проходящего). В последние годы к фотометрическим методам чаще всего относят лишь фотоколориметрию и спектрофотометр ию. [c.4]

    Указанные методы, за исключением рефрактометрии и спектрального анализа, обычно называют фотометрическими методами. В основе фотометрических измерений лежит закон Бугера — Ламберта — Бера, согласно которому интенсивность светового потока, прошедшего через окрашеиный раствор, зависит от интенсивности падающего светового потока, концентрации вещества и толщины слоя раствора. При фотометрическом анализе определяемое вещество в растворе с помощью подходящего реактива переводят в окрашенное соединение, а затем тем или иным способом измеряют поглощение света раствором. [c.147]

    По этому методу определяют коэфф. контрастности для фотонластинок, на к-рых сфотографированы спектры эталонов, и для фотопластинок со спектрами анализируемых проб. Св-ва фотопластинок учитывают введением переводного множителя , позволяющего согласовывать измерения, сделанные па разных фотопластинках использованием характеристической кривой фотопластинки фотометрировапием со ступенчатым ослабителем, дающим возможность измерять непосредственно величину логарифма интенсивности (метод фотометрического интерполирования). Для контроля положения аналитической кривой фотографируют спектры эталонов (метод контрольного эталона). При фотоэлектрической регистрации спектра световая энергия преобразуется фотоэлементом или фотоэлектронным умножителем в электрическую. По величине же электр. сигнала оценивают интенсивность спектральной линии. Фотоэлектрические методы основываются на тех же зависимостях, что и визуальные и фотографические. Однако используются другие устройства — двухканальные (папр., тина ФЭС-1) или многоканальные установки типа квантометров (напр., типов ДФС-10, ДФС-31, ДФС-36, ДФС-41). В фокальной плоскости 36-канального прибора типа ДФС-10 есть 36 выходных щелей и приемных блоков, к-рые настроешл на определенные спектральные линии и сведены в программы по 5—12 элементов в каждой (сталь, чугун, цветные снлавы). Для анализа одного образца необходимо 3—5 мин. Пламенная фотометрия также является фотоэлектрическим методом анализа, где в качестве источника света используется пламя горючего газа (напр., светильного) [c.423]

    В зависимости от используемой аппаратуры в фотометрическом анализе различают фотоколориметрические и спектрофотометрические методы анализа. Фотоколориметрические мето-д ы, в которых измеряется светопоглощеиие окрашенных растворов, используют сравнительно несложную аппаратуру и прн этом обеспечивают достаточную точность измерений (А = 1-г-2 отн.%) и широко применяются в концентрационном анализе (определение концентрации растворов). В большинстве фотоколориметров монохроматизация осуществляется с помощью светофильтров. [c.329]

    В гларе 1 монографии рассмотрена общая кла,ссификация методов анализа, основанных на измерении светопоглощения, или близких к собственно фотометрическим методам. Разумеется, здесь не может быть изложено содержание таких методов, как люминесцентный анализ или каталитические методы, поэтому дана лишь общая характеристика принципов смежных методов, отмечены основные области применения и указана литература. [c.11]

    В системах, имеющих аналитическое значение, очень часто образуются и катионные внутрикомплексные соединения. Например, многие фотометрические методы анализа основаны на измерении светопоглощения водорастворимых положительно заряженных комплексов с органическими реагентами. Извлечение таких комплексов органическими растворителями имело бы большое значение, поскольку позволяло бы в ряде случаев повышать чувствительность и избирательность определений. В частности, реализовались бы все преимущества экстракционно-фотометрических методов по сравнению с обычными фотометрическими, подобно тому, как они реализуются при экстракции анионных внутрикомплексных соединений. Экстракция катионных комплексов вместе с нейтральными может, кроме того, расширить число элементов, одновременно экстрагируемых в данной системе с целью концентрирования, например перед спектральным определением. С другой стороны, в некоторых случаях важно экстрагировать только нейтральные комплексы. Чтобы предотвратить возможность извлечения катионньЕХ внутрикомплексных соединений, надо знать условия их образования и экстракции. [c.115]

    В 1920 г. Лундегард [2] впервые использовал прямое измерение интенсивности в эмиссионном спектральном анализе. По существу это были фотометрические измерения пламени с помощью фотоэлемента. Первые измерения отношения интенсивностей пары линий были проведены Тангейзером и Хейесом в 1930 г. при использовании растворного метода анализа сталей [3, 4], а затем также метода с парой электродов [4, 5]. Спектральные линии выделяли с помощью двух монохроматоров, а их интенсивности измеряли гальванометром, подсоединенным к фотоэлементу. Такой способ позволял [c.198]

    Для анализа высокодисперсных систем применяется также улътрафилътрация через тонкопористые перегородки (мембраны) с определенной величиной пор. Д. а. может быть проведен и с помощью оптич. методов, основанных на измерении интенсивности рассеянного или поглощенного света (см. Нефелометрия и турбидиметрия, Фотометрические методы анализа). [c.574]

    Метод анализа, основанный на сравнении качественного и количественного изменения световых потоков при их прохождении через исследуемый и стандартный растворы, называется колориметрическим. Это общее определение. Однако если подойти более строго, то данный метод основан на измерении ослабления светового потока, происходящего вследствие избирательного поглощения света определяемым веществом, и правильнее называть его абсорбционным спектральным анализом, Существуют спектрофотометрический и фотометрический методы абсорбционного анализа. Первый основан на измерении в монохроматическом потоке света (свет с определенной длиной волны /.), а второй — на измерении в не строго монохроматическом пучке света. Если рассматривать вопрос под таким углом зрения, то колориметрия — метод, основаный на измерении в видимой части спектра. Но мы под колориметрией будем подразумевать все методы определения концентрации вещества в растворе по поглощению света. [c.469]

    Рассмотрен вопрос о чувствительности измерения скорости реакций, применяемых в кинетических методах анализа. При спектро-фотбметрическом способе чувствительность индикаторной реакции определяется произведением молярного коэффициента погашения индикаторного вещества на кругооборотное число реакции и составляет 10— —1 0— М-мин-. При использовании спектрофотометрического и люминесцентного способов чувствительность измерения максимальна для реакций, сопровождающихся образованием индикаторных веществ в ходе реакции. Чувствительность термометрического способа измерения скоростм реакций определяется теплообменом реакционной смеси с окружающей средой и тепловым эффектом реакции и составляет 10- —Ю- М-мин . Термометрический способ измерения скорости реакций по чувствительности уступает люминесцентному и фотометрическому, однако благодаря применению высоких концентраций реагентов избирательность определения при использовании этого способа выше. Табл. 2, рис. 1, библиогр. 5 назв. [c.197]

    В стилометрическом методе количественного анализа измерение отсчетов по шкалам фотометрических клиньев производят при равенстве интенсивностей аналитической пары линий в поле зрения окуляра стилометра. Следовательно, /ан = /ст, или [c.212]


Смотреть страницы где упоминается термин Метод анализа измерений фотометрический: [c.35]    [c.29]    [c.33]    [c.371]    [c.608]    [c.826]    [c.668]   
Автоматический анализ газов и жидкостей на химических предприятниях (1976) -- [ c.47 , c.55 , c.101 , c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Фотометрические методы анализа

Фотометрический анализ



© 2025 chem21.info Реклама на сайте