Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проскок пламени при горении

    В инжекционных горелках для смешения топлива с воздухом используется инжекционное действие газа, быстро вытекающего из сопла в смеситель. В промышленных печах чаще используются горелки среднего давления с давлением газообразного топлива 1,3—3 ama. В этих горелках инжектируется 80—100% воздуха, необходимого для горения (в соответствии с требуемой длиной пламени). Так как в камеру сгорания поступает хорошо подготовленная смесь газа с воздухом, то она быстро сгорает с образованием короткого и несветящегося пламени. Пламя можно получить еще более коротким или вообще устранить его путем пропускания смеси газа и воздуха через узкие отверстия или щели керамической вставки у устья горелки. Поверхность керамической вставки со стороны печи раскалена до высокой температуры, при которой смесь очень быстро сгорает. Газ горит только вблизи поверхности керамической вставки, так как теплопроводность этого материала настолько мала, что смеси, протекающей через щели со скоростью большей, чем скорость распространения пламени (в результате чего не может произойти проскока пламени в смесительную камеру), достаточно, чтобы охладить щели до температуры ниже температуры воспламенения. Оба типа этих горелок приведены на рис. А, Б. У некоторых новейших типов этих горелок используется пористый керамический материал, в котором поры выполняют функцию отверстий. [c.40]


    Если пламя имеет вид сильно вытянутого конуса с зеленой окраской, это означает, что дан сильный ток воздуха при малом токе газа и горение идет внутри трубки 6 (см. рис. 1) у отверстия (проскок пламени). Горелку в таком случае нужно погасить, дать ей охладиться,, закрыть диском доступ воздуха и снова зажечь ее. [c.6]

    Если скорость истечения газовой смеси из сопла приблизительно равна скорости распространения фронта пламени, мы получим стабильное горение (рис. 79, а). Если скорость истечения выше, чем скорость горения, то пламя сорвется с горелки и будет гореть на некотором расстоянии от среза сопла (рис. 79, б) или вообще исчезнет. Если скорость истечения газов меньше скорости горения, то пламя затягивается внут ь ( проскок ). [c.126]

    На рис. 30.20 приведена принципиальная схема пламенного спектрофотометра. Одной из основных частей пламенного фотометра или спектрофотометра являются распылители и горелки. В пламенной фотометрии применяют горелки двух типов нераспыляющие (ламинарные) и распыляющие (турбулентные). Нераспыляющие горелки имеют внешнюю распылительную систему. Образуемые в ней аэрозоли вместе с газом-окислителем подаются в конденсационную камеру — смеситель, где смешиваются с горючим газом и затем попадают в пламя горелки. В комбинированных горелках-распылителях окислителя применяют кислород. Для стабилизации режима горения таких горелок необходимо увеличивать скорость истечения газов из сопла горелки, что делает поток газов турбулентным. В горелках такого типа анализируемый раствор втягивается газом-окислителем в капилляр и затем распыляется в реакционную зону пламени. Существенной частью нераспыляющих горелок являются их наконечники с тонкой защитной сеткой или щелевые, обеспечивающие равномерное горение пламени без проскока его в корпус горелки. [c.695]

    У —оторвавшееся пламя 2 —нестабильное положение пламени Л —зона устойчивого горения 4 —проскок пламени 5->нет пламени [c.696]

    Л. 19]. Незаштрихованными оставлены области, где горение невозможно вследствие проскоков пламени в горелку (область 4) или вследствие того, что пламя полностью отрывается и гаснет (область 5). [c.45]

    При зажигании горелки и удалении запальника в некоторые смесители может произойти проскок пламени и горение газа будет происходить внутри них. Для устранения этого явления наружные торцы смесителей, внутри которых горит газ, следует поочередно перекрыть на несколько секунд несгораемым предметом, например асбестовой пластинкой. При прикрытом торце пламя из трубки-смесителя выносится в топку и при нормальной [c.193]

    В конструкциях всех устройств для сжигания топлива с полным перемешиванием газа и воздуха до входа в горелочный туннель есть общие черты. Для предотвращения обратного удара (проскока) пламени в горелку горящая смесь должна входить в печное пространство со скоростью, большей скорости распространения пламени. Чем больше скорость струи горючей смеси, 7ем больше расстояние точки воспламенения от устья горелки, если не предусмотрены средства для торможения всего или части потока. Горение начинается в той точке струи, где ее скорость равна скорости распространения пламени, при условии, что температура смеси газа и воздуха равна или выше температуры воспламенения. Если эта точка расположена в устье горелки (предельный случай), пламя может проскочить в горелку. [c.72]


    Измерение скоростей затруднительно, особенно в горелке, направленной в печь. Изготовители горелок обошли это затруднение следующим образом. Для каждой горелки существует определенное отношение между скоростью газа и падением давления в ней. Это положение относится и к горелкам с предварительным смешением и к турбулентным. Если на испытательном стенде горелка работает некоторое время с нормальной мощностью, то, повышая давление и увеличивая расход газа и воздуха, достигают давления, при котором пламя гаснет при испытании на открытом воздухе или выносится из горелочного блока, если горелка направлена в горящую печь. Наоборот, если напор перед горелкой постепенно снижается, то при определенной величине в горелках предварительного смешения получается проскок пламени, а в турбулентных горение проникает в сопло. [c.86]

    Когда воздух и природный газ смешивали до впуска в циклонное сопло, возникала тенденция к проскоку пламени и начиналось горение перед лопастями и между ними. Проскок приводил к очень быстрому нагреванию установки, и она могла повреждаться, если бы пламена не гасли. Если через лопасти вводили только воздух, а газ подавали через аксиальную трубку диаметром 3 мм, то проскока не происходило. [c.377]

    Обратный проскок пламени можно предотвратить, подобрав такие размеры каналов в горел очном блоке, при которых скорость газа превышает скорость распространения пламени. Смесь газов можно подать в зону горения только в том случае, если линейная скорость поступающего потока меньше скорости тушения потока, т. е. скорости, при которой пламя отрывается. Скорость тушения потока зависит от диаметра канала, по которому проходит смесь газов. Экспериментальные данные показывают, что скорость тушения быстро уменьшается с увеличением диаметра канала (в тех случаях, когда диаметр не превышает 10 мм). При диаметрах более 10 мм отверстие канала оказывает небольшое влияние. Скорость тушения в этом случае составляет 10,05—10,66 м/сек. В старых конструкциях горелочного блока газовые каналы имели максимальный диаметр 10 мм, в более новых эта величина достигает 20, а иногда и 35 мм. [c.150]

    Если скорость газовоздушной смеси в направлении, нормальном к поверхности конуса горения, станет ниже скорости распространения пламени, то произойдет обратный удар, и пламя проскочит через огневые отверстия внутрь горелки. Обратный удар (проскок) пламен является недопустимым в эксплуатации явлением, т. к. приводит к горению смеси внутри горелки, ее нагреву, нарушению инжекции первичного воздуха и неполноте сгорания газа. Обратный удар пламени обычно сопровождается хлопком с последуюш,им шумом при горении газовоздушной смеси внутри горелки. Во многих случаях горение при хлопке может прекратиться, и в топку или в помещение будет выходить несгоревший газ [4]. [c.299]

    Количество первичного воздуха в газовоздушной смеси является одним из основных факторов, влияющих на скорость распространения пламени. В смесях, в которых содержание газа превышает верхний предел его воспламеняемости (взрываемости), пламя вообще не распространяется. С увеличением количества первичного воздуха в смеси скорость распространения пламени увеличивается, достигая наибольшей величины при содержании воздуха около 90% от теоретически необходимого. Из этого следует, что при увеличении подачи первичного воздуха в горелку создается смесь, более бедная газом, способная гореть быстрее и вызвать проскок пламени внутрь горелки. Поэтому при увеличении нагрузки горелок увеличивается сначала подача газа, а затем воздуха, а при уменьшении нагрузки наоборот. По этой же причине в момент зажигания горелок первичный воздух не должен в них поступать, горение сначала идет за счет вторичного воздуха и по мере увеличения нагрузки горелок в них подают первичный воздух. [c.150]

    Газовые горелки должны быть исправными. При неисправности горелок в помещение лаборатории может попасть светильный газ. Необходимо также тщательно регулировать пламя газовых горелок. При малом напоре газа и большом притоке воздуха в горелку горение газа иногда происходит внутри горелки. При этом пламя над горелкой ослабевает и вытягивается. Это явле[[ие называется проскоком пламени. При проскоке пламени светильный газ не успевает должным образом смешаться с воздухом, вследствие чего понижается температура пламени, происходит неполное сгорание газа и он отравляет воздух в помещении. [c.54]

    При возрастании тепловой мощности горелки и достижении скоростью потока какого-то предела поджигающее воздействие зоны оказывается недостаточным — пламя отрывается. Отрыв может быть частичным, когда горение происходит на некотором расстоянии от устья горелки, и полным, когда горение прекращается полностью. Уменьшение тепловой мощности горелки ведет к тому, что на каком-то режиме скорость потока окажется меньше Скорости распространения пламенн — происходит проскок, или обратный удар, пламени. [c.264]

    Если скорость истечения будет выше, чем скорость горения, то пламя сорвется с горелки и будет гореть на некотором расстоянии от среза сопла (рис. 82, б) или вообще исчезнет. Если скорость истечения газов меньше скорости горения, то пламя будет затягиваться внутрь ( проскок ). [c.146]


    Ознакомиться с явлением проскока пламени внутрь горелки. Для этого при помощи вентиля уменьшить высоту пламени до 2 см и отвернуть диск газосмесительной трубки до отказа. Пламя проскакивает, т. е. горение происходит внутри газовой трубки. Для прекращения этого нежелательного явления следует закрыть газовый кран на линии, дать горелке остыть и снова зажечь ее в соответствии с правилами. [c.10]

    Одним из важнейших условий нормальной работы реактора является достаточное смешение исходных компонентов до получения гомогенной смеси. При горении предварительно перемешанных смесей пламя более однородно по температуре, что благоприятно сказывается на процессе получения ацетилена. Однако в этих условиях часто возможен проскок пламени. [c.188]

    При стационарном режиме скорость вытекания смеси равна скорости нормального распространения пламени, но по мере регулирования горения возможны и нарушения стабильности зоны горения отрыв пламени от кратера горелки или втягивание пламени в смесительную полость горелки (проскок пламени). Высота конуса зоны горения бунзеновской горелки зависит от скорости подачи смеси Wf. При чрезмерном увеличении скорости пламя оторвется, а при слишком малой скорости произойдет проскок. [c.111]

    Устойчивостью горения называется стабилизация фронта пламени без отрыва от горелки и проскока внутрь ее. При отрыве пламени от устья горелки пламя может погаснуть, в результате чего возможно загазовывание топки и дымоходов котла. [c.42]

    Если скорость газа в какой-либо точке поверхности пламени сделается меньше скорости горения, пламя будет проскакивать обратно через трубку. В широких трубках пламя принимает форму, показанную на фиг. 35а. Как видно, при уменьшении скорости потока условие проскока пламени против потока достигается прежде всего в слое О, на некотором расстоянии от стенки. В этом слое действие трения на газовый поток оказывается существеннее, чем влияние охлаждающего действия стенки на скорость горения. В слоях, лежащих еще ближе к стенке, соотношение этих эффектов будет обратным и фронт пламени изгибается кверху. В центре жр трубки скорость газа превышает нормальную скорость горения. Форма пламени обычно асимметрична вследствие чувствительности [c.202]

    Условия устойчивости горения для смесей различного состава удобно изобразить схематически в виде диаграммы (рис. 2,2). Показанная на диаграмме зона устойчивого горения соответствует допустимому соотношению скоростей горение и истечения потока газов. Если скорость истечения превышает некоторую критическую величину, фронт горения удаляется от краев сопла ( отрыв пламени), и пламя гаснет. Если же, наоборот, скорость истечения слишком мала, может произойти так называемый проскок пламени внутрь горелки. [c.51]

    I — оторвавшееся пламя //—нестабильное положение пламени III — зона устойчивого горении 7F —проскок пламени. [c.52]

    Проскок пламени. Плавно поворачивая вентиль, уменьшить пламя до высоты около 2 см, после чего отвернуть диск от трубки до отказа. Пламя проскакивает , т. е. горение происходит внутри газовой горелки (проверить ). При этом пламя над трубкой или исчезает, или становится вытянутым и светящимся, и горение нередко сопровождается свистящим звуком. Если горелка сделана из медного сплава, через некоторое время пламя может приобрести зеленую окраску. [c.10]

    Благодаря делению потока на мелкие струи умег1ьшается вероятность проскока пламени даже при отсутствии водяного охлаждения. На рис. 52 и 53 показаны огнеупорные блоки с отверстиями небольших размеров. Горелки с такими блоками были сконструированы первоначально в Германии. Хотя горение начинается в туннелях блока, его температура в узких каналах значительно не поднимается вследствие малой теплопроводности огнеупора и охлаждения поступающей горючей смесью. Конструкция, показанная на рис. 54, менее безопасна, так как толщина керамической диафрагмы невелика. В горелках, изображенных на рис. 52 и 53, получается короткое пламя — голубоватое в туннелях и незаметное в печи. [c.76]

    То, что К в предыдущем примере считается равным единице, следует из экспериментальных данных и интуитивных предпосылок, о которых упомянуто выше. Дальнейшие уточнения были бы возможны, если бы был найден метод определения отношения в числе Карловитца независимым способом. Нам кажется, что для этого потребуется определить относительную ширину зоны подогрева и зоны реакции в волне, характеризуемой отношением Ть — Т—Ти). Это позволило бы с более общих позиций подойти к теории расстояния гашения (в том числе для различных геометрических конфигураций, таких, как плоскопараллельные пластинки и цилиндрические трубки) и глубины проникновения при гашении одной поверхностью, измеряемых при помощи отношения SugF, где gp — критический градиент скорости при проскоке пламени [2]. Этот вопрос подробно рассмотрен в нашей книге Горение, пламя и взрывы в газах , 1951 г. Как нам кажется, из изложенного выше следует, что уточненная концепция растяжения пламени могла бы заменить идеальную, но очень сложную теорию, основанную на детальном описании переноса тепла и процессов химической кинетики. [c.598]

    Рассмотрим условия, при которых пламя сохраняет устойчивость, т.е. остается неподвижным относительно устья горелки. Известно, что в зоне горения устанавливается динамическое равновесие между стремлением пламени продвинуться навстречу потоку газовоздушной смеси и стремлением потока отбросить пламя от горелки. Однако указанное явление наблюдается в определенном (очень узюм) интервале скоростей истечения газовоздушной смеси из горелки. Когда скорость распространения пламени в какой-либо точке фронта горения превысит скорость истечения газовоздушной смеси, возникает проскок пламени. А в тех случаях, когда скорость газовоздушной смеси во всех точках фронта горения превышает скорость распространения пламени, происходит отрыв пламени. [c.482]

    Размеры запальных отверстий должны обеспечивать устойчивость запального пламени в отношении проскока. Конструктивно запалы выполняются в виде щелей, каналов различной формы, латунных сеток, разбивающих поток на отдельные мелкие струи с целью создания равномерного и устойчивого запального пламени. Для газов с большой теплотой сгорания и низкой скоростью распространения пламени иногда применяют двухступенчатые запалы. В этом случае пламя первой ступени поджигает струю горючей смеси, выходящей из второй ступени, расположенной ближе к основному отверстию. Теплота, вьвделяемая пламенем первой ступени, идет на подогрев горючей смеси, вытекающей из второй ступени. Тем самым скорость распространения пламени смеси, вытекающей из второй ступени запала, повышается. Это способствует увеличению предела устойчивого горения в горелке в отношении отрыва пламени и расширения диапазона регулирования ее тепловой мощности. [c.219]

    Пламя в горелках частичного внутреннего смешения менее устойчиво, чем в диффузионных, и поэтому они менее безопасны и требуют большего внимания со стороны обслуживающего персонала. Под неустойчивостью пламени понимается способность его отрываться от горелки или проскакивать внутрь нее. В нервом случае возможно загазование топки и дымоходов агрегата, вследствие того что горение прекратилось, а поступление газа в топку продолжалось. При последующем розжиге горелки и внесении в топку или газоходы открытого огня или нопадании в них искры может произойти взрыв. При проскоке пламени газ будет гореть внутри горелки, отчего она быстро нагреется и может быть выведена из строя. Кроме того, горение газа внутри горелки будет неполным, с большим образованием сажи, что также может привести к загазованию топки и дымоходов. При проскоке возможно также затухание горелки. [c.149]

    Недопустимы как отрыв плa ieни (частичный и полный), так и его проскок внутрь горелки. В первом случае топка и газоходы, а иногда и помещение котельной заполняются несгоревшим газом, образуется взрывоопасная газовоздушная смесь, что прн наличии источника высокой температуры южет привести к взрыву. Во втором случае пламя, как и при отрыве, может погаснуть и газ начнет выходить в тонку, заполняя ее и газоходы. Если горение сохранится в горелке, то из-за резкого увеличения ее сопротивления оно будет происходить с большим химическим недожогом, и продукты неполного сгорания газа, заполняющие топку и газоходы, также могут образовать взрывоопасные и токсичные (в основном за счет окиси углерода) смеси. Сама горелка вследствие перегрева может выйти из строя. Отсюда следует, что конструкция горелки должна обеспечивать устойчивость пламени без его отрыва и проскока во всем расчетном диапазоне регулирования ее тепловой мощности. [c.265]

    При увеличении апер,, больше расчетного пламя уменьшается, становится более прозрачным и отрывается от горелки, а са ма горелка начинает гудеть. Отрыв пламени может быть неполным, когда горение идет на некотором расстоянии от горелки с химическим недожогом. При полном отрыве пламени появляется опасность загазования топки и газоходов агрегата. Поэтому хотя горелки и должны работать при возможно большем аперв. однако только на таком режиме, при котором обеспечивается устойчивость пламени (отсутствует опасность проскока или отрыва пламени). [c.293]

    Регулируя горение газа, не следует допускать проскока пламени внутрь горелки пли отрыва его, а также горения газа коптящим пламенем. При скорости вытекания газовоздушной смеси из устья горелки меньшей, чем скорость раснространения пламени, пламя проскочит внутрь горелки. Если газовоздушная смесь будет вытекать со скоростью, значительно превышающей скорость распространения пламени, пламя может оторваться от горелки, бздет гореть [c.55]

    Нарушение равновесного состояния приводит к перемещению фронта пламени по потоку или против потока. Если в результате такого нарушения равновесия точка П зоны цроскока сместится по потоку, то это вызовет ooтвeт тj rxщee перемещение пламени, если же зона проскока ликвидируется, то пламя сносится потоком и горение прекращается. Наоборот, увеличение [c.229]


Смотреть страницы где упоминается термин Проскок пламени при горении: [c.12]    [c.14]    [c.104]    [c.697]    [c.44]    [c.362]    [c.111]    [c.247]    [c.19]    [c.598]   
Производства ацетилена (1970) -- [ c.166 , c.167 , c.188 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Пламени проскок



© 2025 chem21.info Реклама на сайте