Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры растворы общая характеристик

    Технология изготовления пленок из ацетатов целлюлозы, так же как и из других эфиров целлюлозы и некоторых синтетических нолимеров, осуществляется через промежуточную стадию растворения указанных продуктов и последующего формования пленок из растворов путем удаления растворителей в процессе высушивания. Поэтому необходимо более подробно остановиться на описании процессов растворения нолимеров и изложить современные представления о механизме этих процессов. Однако сначала следует дать общую характеристику природы растворов полимеров. [c.241]


    Растворение полимера в мономере приведет к разбавлению мономера, и процесс прекратится, когда концентрация мономера снизится до равновесной при данной темп-ре реакции. В общем случае, когда реакционная система включает полимер, мономер и растворитель, а полимер растворим в полимеризационной среде, для расчета термодинамич. характеристик используют теорию р-ров полимеров Флори — Хаггинса (см. Растворы). [c.306]

    VI.15. Общая характеристика растворов полимеров [c.294]

    ОБЩАЯ ХАРАКТЕРИСТИКА РАСТВОРОВ ПОЛИМЕРОВ [c.253]

    Приведенные выше данные наряду со сведениями, имеющимися в литературе, позволяют предположить, что тип выделения нолимера не зависит от ряда общих характеристик полимера, растворителя и осадителя. Так, из табл. 3 видно, что тип выделения полимера нз раствора не зависит, наиример, от величин плотности энергии когезии (ПЭК) или от поверхностного натяжения, т. е. от величин, связанных с энергией межмолекулярного взаимодействия. [c.104]

    Реологические и вязкоупругие свойства полимеров и их концентрированных растворов связаны с образованием в них сеток и систем с временными поперечными связями, переплетениями или зацеплениями. Подобно температуре стеклования характеристическая длина участка цепи между зацеплениями является одной из общих характеристик аморфных п лимерных систем. Параметры зацеплений и длины участков цепей между зацеплениями определяются на основании реологических и вязкоупругих свойств, времени релаксации, найденного методом ядерного магнитного резонанса (ЯМР). [c.205]

    Как известно, кинетика кристаллизации расплава (раствора) определяется двумя кристаллизационными параметрами — скоростью возникновения и роста зародышей новой фазы или линейной скоростью кристаллизации. Общая характеристика кристаллизационной способности заключается в соотношении указанных величин [6, 10, 13, 17, 18]. В соответствии с различными типами кристаллизационной способности расплавов существуют и различные методики исследования кинетики нуклеации [6, 152, 156, 157]. Для расплавов и растворов веществ с малой линейной скоростью кристаллизации можно провести ее, поддерживая образец в состоянии переохлаждения (пересыщения), что позволяет легко определять весь поток моментов зарождения центров кристаллизации изотермического процесса нуклеации. Эта методика обычно используется при исследовании кинетики кристаллизации многих прозрачных органических веществ, полимеров, стеклообразующих расплавов неорганических веществ, исследовании кинетики электрокристаллизации [6, 104, 128]. [c.60]


    Сопоставление данных, приведенных в табл. 5.2 и 5.3, показывает, что пленки ПЭАУ, полученные из исходных растворов, практически не различаются по своим деформационно-прочностным свойствам. При добавлении к раствору в ДМФА метилэтилкетона или бутил-ацетата в случае ПЭАУ-1 прочностные характеристики остаются неизменными, в случае ПЭАУ-2 прочность возрастает в два раза. Увеличение прочности сопровождается перегибом на деформационной кривой при относительном удлинении 200% (рис. 5.11). Начальные участки кривых зависимости Стр—е как для исходных пленок ПЭАУ-1 и ПЭАУ-2, так и для пленок, полученных из смеси растворителей, имеют одинаковый характер и близкие параметры. С другой стороны, условно-равновесный модуль в случае ПЭАУ-2 уменьшается при добавлении МЭК и БАЦ, причем изменение сх. коррелирует антибатно с разрывной нагрузкой при тех же концентрациях добавок. Уменьшение E o у ПЭАУ-2, линейного по своему строению, так же, как и ПЭАУ-1, но обладающего свойствами пространственно-сшитого эластомера (высокая прочность, ограниченное набухание), благодаря присутствию в его макромолекулах большого числа полярных групп, между которыми возникают дополнительные физические связи, предположительно можно связать с характером структурных превращений в растворе ПЭАУ-2 при добавлении к нему МЭК и БАЦ и соответственно с изменением надмолекулярной структуры пленок. Действительно, поскольку функциональность макромолекул ПЭАУ-2 не изменяется при добавлении МЭК или БАЦ, уменьшение числа полярных групп, между которыми возникают дополнительные физические связи, может быть следствием изменения их взаимного расположения в результате перестройки надмолекулярной структуры. Вероятно, при добавлении МЭК или БАЦ к раствору ПЭАУ-2 структурные элементы в нем формируются таким образом, что большая часть полярных групп оказывается внутри них, а группы, оставшиеся на поверхности структурных элементов, образуют редкую пространственную сетку, о чем свидетельствует увеличение степени набухания. Уменьшение числа физических поперечных связей между структурными элементами способствует увеличению подвижности молекулярных цепей, следствием чего является ускорение протекания релаксационных процессов (уменьшение параметра К) и увеличение прочности при разрыве. Возрастание прочности при уменьшении числа поперечных связей на первый взгляд противоречит общим представлениям о прямой связи прочности с концентрацией поперечных связей в пространственно-сшитых полимерах. Однако эти противоречия объясняются спецификой вклада в пространственную сетку полиуретанов прочных поперечных и слабых межмолекулярных связей. Показано [61], что уменьшение числа поперечных связей в полиуретанах способствует увеличению гибкости полимерных цепей последние благодаря этому сближаются, что ведет к образованию между ними большего числа межмолекулярных связей, определяющих прочностные свойства полиуретанов. [c.235]

    Второй вириальный коэффициент раствора Аг, фигурирующий в уравнениях рассеяния (1.68а) и осмотическом (1.31), является мерой неидеальности раствора, т. е. степени отклонения от идеальных законов Я с и /е с. Поскольку неидеальность раствора есть проявление взаимного влияния растворенных молекул, величина Аг характеризует степень межмолекулярного взаимодействия в растворе. Одной из важнейщих задач теории растворов полимеров является установление связи между Аг и молекулярными параметрами (ЬоУ и а. Этой проблеме посвящено большое количество работ, сжатый, но четкий обзор которых можно найти в [202]. Ввиду недостатка места мы ограничимся общей характеристикой проблемы и указанием на новейшие работы. [c.184]

    Верхняя критическая температура смешения определяет активность пластификатора по отношению к эфиру целлюлозы. Чем она ниже, тем выше активность пластификатора. Но эта общая характеристика поведения системы из пластификатора и полимера, вскрывая природу таких систем, как истинных растворов, не объясняет молекулярного механизма процесса пластификации как процесса смешения обоих компонентов с образованием гомогенной (однофазной) системы. В то же время механизм этого процесса отличен для полярных и неполярных компонентов. [c.279]

    Общая характеристика процесса. Выделение синтетических полимеров из их растворов — одна из основных задач в технологии получения синтетических каучуков. Наиболее известный процесс з даления органических растворителей из растворов полимеров состоит из двух основных операций  [c.149]

    Задача расчета вероятностей различных конфигураций полимеров, изображенных на рис. 1.2г и 1.2д, более сложна. Однако она имеет важное практическое значение, так как ее решение позволяет вычислить размеры макромолекул, интенсивность рассеяния света растворами полимеров и другие характеристики. Она разбивается на две самостоятельные задачи. Первая заключается в нахождении функций распределения по длинам боковых и внутренних цепей, а вторая, существенно более сложная, состоит в расчете вероятностей различных их взаимных расположений в пространстве, т. е. топологических структур соответствующих молекул. Если первая задача является общей для всех типов полимеров, которые приведены на рис. 1.2, то для первых трех из них второй задачи не возникает, так как их топологические структуры строго определены. [c.35]


    В настоящее время недостаточно данных для того, чтобы построить обобщенную зависимость относительной вязкости от состава, применимую для широкого круга разнообразных полимеров. Рассматривая этот вопрос, Ферри и сотр. [11] предположили, что при анализе этой зависимости в качестве аргумента следует использовать произведение Замена молекулярного веса на число атомов в основной цепи привела к тому, что удалось совместить многочисленные данные, полученные для различных полимеров в области значений т] < 10 . При высоких значениях молекулярных весов и концентраций данные, полученные для различных полимеров и даже для одного и того же полимера, но разных растворителей, различаются более чем на десятичный порядок. Можно полагать, что пока не будет получено достаточного количества экспериментальных данных, особенно в области высоких концентраций, вряд ли удастся построить общую характеристику вязкостных свойств растворов полимеров. [c.191]

    С использованием потенциальных (характеристических) кривых М. М. Дубинин разрешил проблему прогнозирования свойств микропористых сорбентов. При каталитических процессах, взаимодействии дисперсных материалов с полимерами и во многих других практически важных системах доля активной поверхности обычно составляет незначительную часть общей поверхности твердого вещества (часто менее 17о). В этих случаях для прогнозирования свойств твердых веществ необходимо относить адсорбционные характеристики к соответствующей доле активной поверхности, т. е. производить измерения при крайне низких давлениях или концентрациях адсорбтивов. Измерения упрощаются, если для исследования адсорбции компонентов окислительно-восстановительных систем использовать потенциометрию. При этом обязательным условием является химическая и электрохимическая обратимость процессов. Если твердое вещество обладает достаточной электронной проводимостью, то из него можно изготовить, например, прессованием, электрод и применить его как индикаторный при изучении адсорбционных характеристик. Более универсальна методика, основанная на применении индифферентного электрода в растворе солей железа (III) и (II), с помощью которой могут быть исследованы любые дисперсные и пористые материалы. [c.204]

    Поворотно-изомерная теория дает количественное истолкование физических характеристик макромолекул в растворе — размеров и формы клубков, дипольных моментов и оптических свойств. Теория хорощо согласуется с опытом [2, 3, 5]. Она раскрывает физический механизм растяжения полимеров — высокоэластичность каучука. При растяжении цепи происходит изменение набора ее конформаций. Механизм такого изменения — поворотная изомеризация. Поясним сказанное с помощью одномерной модели макромолекулы. Представим каждое звено стрелкой длиной I, которая может смотреть или вправо, или влево. Одному поворотному изомеру (обозначим его t) отвечают две соседние стрелки, смотрящие в одну сторону, другому (обозначим его s)—две соседние стрелки, смотрящие в разные стороны. Общая длина цепи выражается алгебраической суммой длин всех стрелок. На рис. 3.12, а изображена цепь, состоящая из [c.136]

    При практическом применении полимерных растворов, однако, сталкиваются с областью умеренно высоких или очень высоких концентраций. Поэтому в этих случаях становятся существенными и часто доминирующими эффекты, обусловленные взаимодействиями высоких порядков. Тем не менее теоретических оценок значений т) для концентрированных растворов известно очень мало. Проведенные исследования привели к установлению ряда эмпирических корреляций между указанными переменными особенно это касается построения обобщенных зависимостей т] от с, М, Т и вязкости растворителя 1 5 для конкретных пар полимер — растворитель. Известно лишь очень ограниченное число попыток включить в рассмотрение какие-либо характеристики природы растворителя 5, причем не удавалось найти какого-либо общего вида функциональной зависимости 1-11, от с и 5. [c.215]

    Таким образом, во всем диапазоне составов параметрами, определяющими вязкость полимерных растворов, являются [1] величины [т]] и Км, измеренные в области разбавленных растворов и характеризующие соответственно объемное содержание полимера в растворе и реологическую эффективность межмолекулярных взаимодействий в разбавленных растворах. Эти Параметры могут быть связаны с термодинамическими характеристиками системы полимер — растворитель, причем удается разделить влияние эне р-гетических и энтропийных эффектов взаимодействия полимера с растворителем на величину Км- Такое разделение позволяет дать общую трактовку [c.245]

    В связи с тем, что в последние годы в полимерной науке также все в большей мере проявляется тенденция к изучению проблем, связанных с индивидуальностью макромолекул, можно ли с уверенностью утверждать, какой из подходов, использованных этими двумя крупнейшими учеными, является более перспективным. Во всяком случае, благодаря развитию теории эффекта исключенного объема в настоящее время появилась возможность связать конфор-мационные характеристики макромолекулы как целого, которые определяются на основании исследования различных молекулярных свойств полимеров в растворе, с химической природой цепи. Каучукоподобная упругость также является общим специфическим свойством полимерных веществ, однако, если теория упругости каучука вначале строилась на основе общих абстрактных представлений об энтропийной природе упругости, то в настоящее время оказалось необходимым учитывать вклад конформационной энергии цепи, который имеет вполне определенное значение для полимерных молекул различного строения. [c.153]

    Поскольку скорость обмена зависит от скорости диффузии сквозь зерно полимера, для улучшения кинетических характеристик ионообменных смол разработаны методы синтеза макропористых сополимеров стирола с ДВБ. Такие полимеры образуются при полимеризации мономеров в среде инертных разбавителей, которые являются хорошими растворителями для мономеров и не растворяют полимер. В результате образуется пространственный полимер, содержащий ячейки, заполненные растворителем. После завершения полимеризации растворитель удаляется перегонкой с водяным паром или в вакууме. Полимер сохраняет пористый каркас. Варьируя соотношение стирола с ДВБ, количество растворителя и его природу, можно в широких пределах видоизменять поверхность, общую пористость и средний размер пор сополимера. Поскольку такие пористые сополимеры оказались пригодными для разделения многих сложных смесей в газовой хроматографии, а также соединений с различным молекулярным весом в гель-про-никающей хроматографии, они производятся многими фирмами (табл. 7). [c.199]

    Следует учитывать влияние распределения по молекулярным весам на такие свойства растворов полимеров, которые связаны с взаимодействиями молекул и определяются, например, величиной второго вириального коэффициента [19, 20]. В общем случае влияние молекулярновесового распределения на такие характеристики растворов незначительно, если в образцах не содержится низкомолекулярных фракций. [c.10]

    Изучение свойств смесей растворов полимеров. Для характеристики термодинамической совместимости полимеров изучалось расслаивание растворов полимеров в общем растворителе при хранецшш исследовался характер изменения вязкости растворов от содержания отдельных компонентов в течение длительного времени. Концентрация растворов, как правило, не превышала 5%. При этом наблюдалась хорошая корреляция между величиной параметра р и свойствами растворов -Так, из исследованных выше 80 разных пар растворов полимеров при 20° С не расслоились растворы НК и СКБ, СКН-18 и СКН-40. При концентрациях до 2% не расслаиваются некоторые смеси НК и поливинилацетата, НК и метилметакрилата. [c.19]

    Еще относительно недавно, не более 30 лет тому назад, работы по изучению поверхностного натяжения полимеров и их растворов занимали сравнительно скромное место в общем списке исследований физико-химических характеристик этого важнейшего класса органических соединений, что не является случайным. Отсутствие в арсенале исследователей надежных методов определения поверхностного натяжения полимерных веществ, их большая вязкость, сложная зависимость поверхностного натяжения от температуры, состава полимерного раствора и времени (например, в случае полимеризации), громадные молекулярные массы, склонность к образованию надмолекулярных структур и другие факторы делали эту задачу довольно трудной. [c.5]

    Описываемые ниже методы характеристики и идентификации поликапроамида — такие, как определение вязкости раствора, молекулярного веса, молекулярновесового распределения, а также вязкости расплава, содержания воды и низкомолекулярных фракций,— естественно, представляют собой в значительной мере частный случай общих методов исследования высокомолекулярных соединений. Поэтому для них справедливы те же ограничения, которые приняты в химии полимеров в отношении пределов исполь- [c.245]

    Однако основное предположение об исключительно высокой сольватации частиц таких веществ, как о явлении, определяющем всю основную специфику свойств этих систем, оказались совершенно неправильными [1]. Более того, самопроизвольный характер процессов растворения полимеров в подходящих растворителях, устойчивость полученных систем, обратимость этих систем, что вытекает из подчинения их правилу фаз, однозначно подтвердило общеизвестные в настоящее время представления о таких системах, как термодинамически устойчивые истинные растворы. И если механизм растворения и природа растворов для г о м о п о-л и м е р о в, т. е. для полимеров, состоящих из одинаковых по своему химическому составу звеньев, принципиально выяснены, то этого нельзя еще сказать о привитых и блок-сополимерах, в особенности для случаев с резко отличными характеристиками полимерных компонентов, составляющих общую разветвленную или ценную молекулу. [c.22]

    Наряду с уравнением изотермы адсорбции (V, 102) получен еще ряд уравнений, дающих возможность оценить зависимость доли поверхности, занятой полимером 0, доли связанных сегментов р = Ps/(Рь + Ps), отношения 0/р и Яд концентрации раствора, общего числа сегментов в молекуле (молекулярного веса), кооперативного фактора увуз параметров взаимодействия у и Xi и некоторых характеристик, определяющих конформации полимерных цепей. Для двух случаев — атермического раствора (х = 0) и 0-растворителя и = 0,5),— задавая различные значения указанным [c.129]

    Заметим, кстати, что вообще вопрос о роли МБР полимеров в процессах переработки их через растворы и о влиянии отдельных фракций полимера на свойства тото-вого изделия чрезвычайно важен. В связи с этим следует отметить, что общая характеристика лолимера по молекулярному весу явно недостаточна, если не приведено молекулярио-весовое распределение его. Не имея возможности подробнее останавливаться на этом, мы можем сослаться на работы Френкеля, в частности на его книгу Введение в статистическую теорию полимеризации (изд. Наука , 1965). [c.160]

    Подробно изучено влияние у-излучения на полиэтилен с добавкой ионола (2,6-ди-трег-бутил-4-метилфенол). С использованием методов ИК-спектроскопии, дифференциального термического анализа, путем определения вязкости растворов и термомеханических характеристик полимера выявлены общие закономерности влияния этого стабилизатора он почти полностью подавляет процесс сшивания при облучении в вакууме (антирадное действие) и предотвращает термоокисление полимера в течение ограниченного времени (на термограммах при Т >Тпл экзотермические пики сглажены). [c.140]

    Взаимодействие полиблочного СПУ с растворителем определяется термодинамическими параметрами взаимодействия компонентов (блоков) как между собой, так и каждого компонента с растворителем [14, 15]. В результате количественного различия в термодинамических параметрах взаимодействия компонентов с общими растворителями образуются ассоциаты макромолекул, которые являются лабильными и их формирование связано с предисто-рией приготовления раствора. В работе [16] установлено, что при одно- и двухстадийном способах получения полиуретана отличаются как кинетические параметры, так и молекулярно-массовые характеристики результирующего продукта. В случае двухстадийного способа получения ПУ степень полимеризации существенно выше. Причина этого явления заключается в том, что присзтствие низкомолекулярных акцепторов протонов препятствует самоассоциации уретанмочевинных жестких сегментов при синтезе полимера [17]. При этом прочностные характеристики полимера могут значительно измениться по сравнению с тем же материалом, полученным без растворителя. Кроме того, использование растворителя при формировании структуры полиуретана дает возможность оказывать влияние на конформационные свойства его макромолекул. Установлено [18], что образцы сеток, полученных из раствора, имеют более простую топологию и меньше зацеплений. Различные растворители могут оказывать различное действие на конечную форму макромолекулы, в результате чего изменяются и механические свойства полимера. Использование полярных растворителей при синтезе полиуретанов, где происходит максимальное разворачивание макромолекулярного клубка, позволяет получать материалы, имеющие удлинение при разрыве более 1000% при достаточно высоких значениях разрывной прочности, достигающей 52 МПа [19, 20]. [c.227]

    Температурная зависимость деструкции вследствие механического сдвига позволяет сделать вывод, что напряжение сдвига (деструкция, на которую не влияет температура) или энергия сдвига (деструкция снижается при повышении температуры) определяют деструкцию. При постоянных напряжениях сдвига или энергии сдвига степень и скорость деструкции снижаются по мере увеличения концентрации полимера. Взаимодействие между молекулами полимера, происходящее при высоких концентрациях вследствие ухудшения растворимости аналогично увеличению молекулярной массы и приводит к увеличению чувствительности к сдвигу. Следовательно, растворяющая способность базового масла играет важную роль в деструкции и зависит от концентрации полимера. Чем больше объем полимерной молекулы благодаря хорошей сольватации растворителя, тем меньше чувствительность раствора к сдвигу при высоком содержании полимера. Растворы частиц с низкими концентрациями ведут себя диаметрально противоположно клубки большого объема интенсивно разрушаются, а малообъемные клубки слабо деструкти-руются. Кинетика деструкции под действием сдвига разбавленных растворов полидецилметакрилата в тетрагидрофуране и н-бутил-ацетате может быть описана зависимостью первого порядка между концентрацией и временем. Константа деструкции, очевидно, пропорциональна молекулярной массе и, следовательно, гидродинамическому объему полимерных молекул. Таким образом, изменения гидродинамического объема могут быть использованы для характеристики степени деструкции как функции растворителя. Константа увеличивается по мере снижения общей концентрации полимера и обратно пропорциональна квадратному корню из концентрации k = a/i/ . При высоких концентрациях полимера разрыв статистически распределен на всю полимерную молекулу, а при малых концентрациях (растворы частиц) разрыв расположен преимущественно вблизи центра молекулы [9.37]. [c.199]

    Метод сухого формования наименее изучен с точки зрения анализа физических и физико-химических процессов, протекающих в зоне формования, поэтому не исключена вероятность отыскания дополнительных возможностей его усовершенствования. Если справедливо предположение, что для улучшения физико-механических характеристик волокон обязательным условием является образование структурной микрогетерогенности, то это может быть осуществлено созданием двухфазности за счет расслоения раствора при частичном испарении из формующейся нити одного из растворителей с возникновением несовмещающейся системы или за счет тонкого взаимного диспергирования растворов несовмеща-ющихся полимеров в общем растворителе. Но при этом в качестве одного из обязательных условий должно оставаться осуществление высокой ориентационной вытяжки для того, чтобы обеспечить анизометричность частиц каждого из полимеров. В соответствии с этим еще раз следует обратить внимание на необходимость изучения кинетики изменения вязкоупругих свойств формующейся нити с целью изыскания возможности ориентационной вытяжки волокон на большом участке пути нити в шахте. Эта последняя проблема является, кстати, общей для любых методов формования искусственных волокон и одинаково трудной в экспериментальном отношении из-за высоких скоростей процесса- [c.179]

    Одним из способов определения тех параметров, которые влияют на вязкость, является построение обобщенных зависимостей ц=Цс), действительных для широкого круга полимеров и растворителей, и вывод на их основе нолуэмпирических уравнений, имеющих силу в широком интервале концентраций. Для растворов гибкоцепных полимеров неоднократно предпринимались попытки такого обобщения. Ниже этот подход распространяется на растворы жесткоцепных полимеров [80]. Использованные для этого полимеры, их маркировка и некоторые характеристики сгруппированы в табл. П1.2 (Колонки 1—6). В качестве растворителя, общего для всех изученных полимеров, была выбрана концентрированная (98,5—99,5%) серная кислота. Преимуществом такого выбора является использование единого растворителя, а недостатком — тот факт, что для разных полимеров серная кислота данной концентрации может быть растворителем различного качества. К сожалению, жесткоцепные полимеры растворяются только в ограниченном круге растворителей, среди которых чрезвычайно трудно выбрать такие, которые удовлетворяли бы условию эквивалентности термодинамического качества по отношению ко всем исследованным полимерам. [c.188]

    Скэнли сообшил об изучении влияния молекулярной массы и соотношения карбоксилатов и амидов двух видов акриловых полимеров на вязкость и фильтрационные свойства четырех различных композиций буровых растворов. Для одного вида полимера по мере увеличения молекулярной массы с 1800 тыс. до 390 тыс. фильтрация обработанного им раствора снижалась, а вязкость и предельное статическое напряжение сдвига повышались. Пока не сделано никаких общих выводов о влиянии на характеристики бурового раствора соотношения карбоксилатов и амидов. Гидролизованный полиакриламид, имеющий молекулярную массу около 250 тыс., обеспечил самую низкую фильтрацию при содержании карбоксилатов менее 50 % и самые малые изменения вязкости и предельного статического напряжения сдвига при 23%-ном содержании карбоксилатов. [c.477]

    Как уже отмечалось выше, зависимость между индивидуальными свойствами и структурой изолированных макромолекул и макроскопическими свойствами полимеров в блоке является достаточно сложной. Поэтому на современном уровне полимерной науки, которая развивается на основе самых общих представлений о специфических особенностях ценных молекул, по мере дальнейшей детализации теории удается лишь косвенно выяснить связь между индивидуальными характеристиками макромолекулы и йекоторыми физическими свойствами полимера. Иначе говоря, в настоящее время предсказания теории можно использовать лишь для нахождения корреляционных соотношений между структурой и свойствами полимера. Например, вряд ли можно говорить о возможности описания физических свойств расплавов или концентрированных растворов полимеров в терминах индивидуальных характеристик макромолекул. Задача детального обсуждения зависимости между различными макроскопическими свойствами и молекулярным строением полимера выходит за рамки предмета настоящей главы, и поэтому мы рассмотрим лишь два параметра, а именно температуру плавления и температуру стеклования полимера, которые, по-видимому, проявляют наиболее четкую связь со структурой макромолекул. Кроме того, анализ этих свойств подтвердит высказанную ранее идею о том, что молекулярная структура не является единственным фактором, определяющим макроскопические свойства полимера. [c.164]

    Повышение эффективности хроматографического разделения в значительной мере связано с оптимизированным по различным параметрам колонны приближением к термодинамической селективности. Поэтому весьма важна оптимизация выбора неподвижной фазы (адсорбента, растворителя) и элюента на основе качественной и по возможности количественной связи определяющих селективность констант термодинамического равновесия с характеристиками меукмолекулярного взаимодействия газовых и жидких растворов с адсорбентами. В простейших случаях неспецифического взаимодействия для этого используются молекулярно-статистические выражения удерживаемых объемов (констант адсорбционного равновесия) газов и паров через атом-атомные потенциальные функции взаимодействия атомов молекулы с атомами твердого тела в соответствующих валентных состояниях этих атомов. В статье приводятся результаты молекулярно-статистических расчетов удерживаемых объемов для ряда углеводородов на графитированной термической саже и в цеолитах. Дается оценка энергии специфического молекулярного взаимодействия при адсорбции, в частности энергии водородной связи, и рассматривается качественная связь селективности разделения с соотношением вкладов специфических и неснецифических взаимодействий в общую энергию адсорбции и с температурой. С этой точки зрения рассматриваются возможности использования в хроматографии атомных, молекулярных и ионных кристаллов, гидроксилированных и дегидроксилированных поверхностей окислов, модифицирующих монослоев и полимеров. Рассматриваются также некоторые возможности адсорбционной жидкостной молекулярной хроматографии с использованием соответствующего подбора геометрии и химии поверхности адсорбента, молекулярного поля (состава) элюента и температуры колонны. Приводятся примеры перехода от адсорбционных к ситовым гель-фильтрационным разделениям полимеров па микропористых кремнеземах. [c.33]

    Локальная плотность звеньев в полимерном клубке. Локальная плотность звеньев является важнейшей характеристикой, определяющей молекулярную динамику и структуру растворов полимеров [41, 42]. В отличие от средней плотности звеньев в объеме полимерного клубка (<р>=Ы1У, где N — общее число звеньев, V — объем, занимаемый макромолекулой) локальная плотность — это концентрация звеньев в небольшом объеме вблизи некоторого звена полимерной цепи рлок = /у, где п — число звеньев в объеме, 0= 4/ЗягЗ. [c.143]

    Для получения молекуляр-но-весового распределения по турбидиметрическому методу обычно полагают, что мутность раствора прямо пропорциональна массе осажденного полимера. Это предположение не подтверждается для растворов полиэтилена, следовательно, для этого полимера обычные методы расшифровки кривых мутности не могут быть применены 15 59, Вместо этого расчеты производят по эмпирическому соотношению мутности с характеристиками молекулярно-весового распределения. На рис. 24 приведена зависимость функции мутности 5 (разность температур между значениями мутности, соответствующими 20 и 50% общей величины) от параметра Р в распределении Весслау, определенного по результатам дробного фракционирования. Изменение р от 0,6 до 2,5 соответствует интервалу отношений М-аШп от 1,1 до 22. Это отношение зависит от оптической геометрии прибора и скорости охлаждения если они изменяются, то необходимо получить новое соотношение. [c.159]

    Полициклизация в растворе лишена многих недостатков, присущих твердофазным способам. Из общих соображений для гомогенной полициклизации можно ожидать повышения скоростей и степени завершенности реакции отпадает необходимость учета фазового состояния полимера нет опасности разрушения волокна и т. д. Препятствием к применению этого способа служит низкая растворимость полигетероариленов с циклами в цепи. Для повышения растворимости полимеров с гетероциклами можно прибегнуть либо к их химической модификации, либо к подбору сильнодействующих растворителей. Первый путь пока представляется менее перспективным из-за значительного снижения термических характеристик полимера. Практическое применение получила полициклизация в серной кислоте, олеуме и полифосфорной кислоте. Физическая характеристика этих растворителей приведена выше. В последние годы в лабораторной практике стали применять кислоты Льюиса и растворители сульфонового типа. Растворяющая способность серной и полифосфорной кислот связана с протонированием гетероатомов и ароматических ядер кислот Льюиса — с возникновением координационных связей между этими кислотами и гетероатомами и ароматическими ядрами полимера [62]. Наряду с высоким растворяющим действием эти соединения являются сильными дегидратирующими агентами, что собственно и определяет их применимость в качестве реакционной среды для полициклодегидратации. Помимо этого ПФК обладает и каталитическим действием [63]. Считают, что она образует соль с диаминами, способствует повышению реакционной способности электро-фильного углеродного атома карбонильной группы. Показано присутствие фосфора в цепи полимера. Комплекс ПФК с амином находится в равновесии со свободным амином [c.58]


Смотреть страницы где упоминается термин Полимеры растворы общая характеристик: [c.228]    [c.47]    [c.232]    [c.222]    [c.302]    [c.244]    [c.6]    [c.9]   
Химия и технология полимерных плёнок 1965 (1965) -- [ c.255 , c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Раствор общая характеристика

Растворы полимеров



© 2025 chem21.info Реклама на сайте