Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость растворителей зависимость от температуры

    Для водных и органических растворителей на температурную зависимость электропроводности влияют вязкость, диэлектрическая проницаемость, степень диссоциации и подвижности ионов. Для водных растворов степень диссоциации для большинства электролитов уменьшается с ростом температуры, уменьшается вязкость растворов и возрастает подвижность ионов. Для органических растворителей температурный коэффициент электропроводности положителен. Изме- [c.281]


    I. Приготовить несколько разбавленных растворов полярного вещестьа в неполярном растворителе. 2. Измерить емкость конденсатора, заполненного растворителем и каждым из приготовленных растворов. 3. Рассчитать диэлектрическую проницаемость каждого из растворов, используя табличное значение диэлектрической проницаемости растворителя, взятое из справочника при той же температуре, при которой производились измерения емкости. 4. Измерить плотности растворов всех концентраций при той же температуре, при которой были измерены емкости. 5. Рассчитать по уравнению (И,22) поляризацию растворенного веш,ества. 6. Построить график зависимости поляризации растворенного вещества от концентрации раствора и экстраполировать завпсимость до предельного разбавления. 7. Определить показатель преломления растворенного вещества и вычис лить молярную рефракцию. 8. Рассчитать по уравнению (И, 17) ди польный момент растворенного вещества. [c.99]

    Степень диссоциации электролита зависит от природы растворителя, температуры и других факторов. Чем выше диэлектрическая проницаемость растворителя, тем больше степень диссоциации электролита (приближенное правило Каблукова — Нернста — Томсена). В пределах одной группы растворителей, например спиртов, это правило хорошо реализуется, однако при переходе к представителям других групп, например нитрометану, пиридину или ацетону, зависимость нарушается. Имеет значение и природа самого электролита. [c.437]

    Теоретический расчет, выполненный Дебаем и Хюккелем на основании электростатической модели строения раствора электролитов, показывает, что в разбавленных растворах (с С 1 10- г-экв/л) уменьшение электрической проводимости, вызываемое взаимным торможением ионов, пропорционально корню квадратному из концентрации. Зависимость X (и ц) от - /с для таких растворов выражается прямой линией. Уравнение, описывающее эт/ зависимость, имеет вид к = Х — а ]Т, где а — постоянная, зависящая от природы растворителя, его диэлектрической проницаемости, вязкости, природы электролита и температуры. [c.186]

    На характер зависимостей Д/ = f(m) оказывает влияние изменение диэлектрической проницаемости растворителя с температурой и изменением состава раствора, межионное взаимодействие, десольватация ионов и т.д. Подробный анализ различных вкладов в величину АЩ проведен в работе [23]. [c.166]

    Велики трудности создания математически разработанной теории растворов электролитов. Было бы очень просто, если бы можно было рассматривать такую систему, как совокупность заряженных шариков-ионов в растворителе, представляющем собой непрерывную среду с диэлектрической проницаемостью е. Такая модель не может дать согласия с опытом. Ведь надо учесть совокупное действие ряда факторов изменение а растворителя в зависимости от природы ионов и их концентрации, влияние собственного объема ионов, влияние концентрации несвязанного растворителя, возможность формирования сложных (тройных и др.) частиц, изменение энергии сольватации ионов с концентрацией раствора, неполноту диссоциации электролита, изменение структуры раствора с его концентрацией. Обилие этих факторов и различный их вклад (в зависимости от природы компонентов раствора, его концентрации и температуры) делает невозможным их строгий количественный учет во всей совокупности. Современный уровень квантовомеханического и электростатического подходов совершенно недостаточен для этого. [c.173]


    В растворителе с большей диэлектрической проницаемостью как константа скорости при 25°, так и суммарная энергия активации выше следовательно, кинетическое поведение должно в основном определяться энтропией активации. Суммарная энергия активации выражается как Ес = = 1 + — Ес- Молекулярный вес продукта близок к 1100 и не зависит от концентраций мономера и катализатора, указывая на то, что передача цепи ( [Р1]) преобладает над спонтанным обрывом ко) в уравнении (16). Подтверждением этого заключения явилось дополнительное наблюдение, что молекулярный вес полимера не зависит от диэлектрической проницаемости растворителя. Зависимость молекулярного веса от температуры соответствует значению Есп —3,3 ккалЫоль, однако так как это соответствует ( р — м), то невозможно определить значение Е . [c.328]

    Зависимость Ig/ i—(1/е) при всех температурах близка к линейной, что указывает на решающее влияние диэлектрической проницаемости растворителя на устойчивость [ o(NHa)f+ в водных растворах метилового спирта. [c.29]

    Температурный коэффициент для электропроводности, найденный Педерсеном и Амисом [21], получен из уравнения Онзагера и поэтому включает электростатические представления так же, как и влияние растворителя. Влияние растворителя несомненно является результатом зависимости диэлектрической проницаемости и вязкости растворителя от температуры. [c.280]

    Различие в химических свойствах фракций смолистых веществ проявляется и в характере температурной зависимости диэлектрической проницаемости растворов последних. Наблюдается следующая закономерность чем более полярным растворителем извлечена из силикагеля данная фракция смолы, тем при меньших концентрациях раствора на кривых e=f(t) появляется максимум, а в близких концентрациях максимум тем значительнее и тем больше смещен в область высоких температур. Так, например, для раствора фракции смолы ромашкинской нефти, извлеченной ацетоном, наблюдается максимум на кривой е=/( ) уже при концентрации смолы в растворе, равной 14%, причем восходящая ветвь кривой (Ае/Л >0) доходит до +7°, в то время как для фракции смолы этой же нефти, но извлеченной четыреххлористым углеродом, максимум на соответствующей кривой появляется при концентрации смолы, равной 33%, а восходящая ветвь кривой кончается уже при —5°. Сопоставление этих данных с результатами изучения химического состава и свойств соответствующих фракций ясно показывает, что увеличение склонности к ассоциации смолистых веществ в растворе связано с увеличением количества полярных групп и с повышением суммарного содержания в смоле гетероатомов (З+К+О). Чем выше содержание гетеропроизводных органических соединений, тем сильнее и в более широком интервале происходит повышение диэлектрической проницаемости с ростом температуры, обусловленное диссоциацией молекулярных ассоциатов. Эти выводы носят пока качественный характер, поскольку количественные соотношения могут быть установлены только при учете фактора вязкости. [c.187]

    При постоянной температуре множители р могут изменить вероятностный фактор Р, величина ЛЯд + АЯе — АЯдз /. вряд ли превышает несколько килоджоулей, и в общем случае энергия активации не должна ощутимо изменяться. Эти рассуждения справедливы, если нет заметного межмолекулярного взаимодействия между растворителем и активными составляющими системы (исходными молекулами и активированным комплексом). Наличие взаимодействия может приводить к искажению поверхности потенциальной энергии и соответственно к резкому увеличению или уменьшению скорости реакции. Например, сольватация растворителем исходных веществ (рис. 46) приводит к увеличению энергии активации, а сольватация активированного комплекса —к ее уменьшению на величину энергии сольватации. По-видимому, именно этим обстоятельством (а не зависимостью от диэлектрической проницаемости е) может быть объяснено резкое различие скорости реакций Меншуткина в зависимости от природы растворителя. Следует отметить, что количественные расчеты весьма затруднительны, поскольку в реальной системе наиболее правдоподобно ожидать разных энергетических эффектов сольватации исходных веществ и активированного комплекса. Энергия сольватации определяется природой и строением взаимодействующих молекул, в частности, их дипольными моментами и поляризуемостью. От этих же параметров зависит и е. Таким образом, нет оснований ожидать простой зависимости между скоростью реакции и диэлектрической проницаемостью растворителя. [c.179]

    Количество теплоты, необходимое для переноса моля электролита из кристаллической фазы в разбавленную газовую фазу, весьма велико, например для бромистого натрия при 25° С оно составляет 177 ккал/моль. Однако, с одной стороны, теплота растворения этой кристаллической соли в воде равна нулю, так что взаимодействие ионов с растворителем должно быть сильно экзотермическим. С другой стороны, грубые электростатические расчеты показывают, что поле, которое действует ча ближайших соседей иона, в растворе должно быть весьма велико, порядка 106 — 107 В/см В зависимости от принятого значения диэлектрической проницаемости энергия электростатического взаимодействия молекулы воды с ионом натрия в непосредственной близости от нее составляет около 0,3 — 0,5 ккал/моль, тогда как RT = 0,6 ккал/моль при комнатной температуре. Эти соображения, а также громадное количество различных экспериментальных фактов привели к теории сольватации ионов, т.е. рассмотрению более или менее специфичного взаимодействия некоторого иона с одной или несколькими молекулами растворителя. Величина энергии взаимодействия занимает промежуточное место между энергиями [c.216]


    Собраны сведения о свойствах бинарных систем на основе более 150 растворителей в зависимости от состава смеси и температуры. Приведены данные о вязкости, плотности, адиабатической сжимаемости, скорости ультразвука, диэлектрической проницаемости, показателе преломления, поверхностном натяжении и др. [c.206]

    Важную роль в реакциях карбанионов играет ассоциация ионов, она была подробно изучена в связи с анионной полимеризацией [66]. В табл. 2.7.30 приведены данные о реакционной способности свободных карбанионов ( ) и ионных пар (к ) живых анионов полистирола на стадии роста цепи при полимеризации стирола в различных растворителях. Разделенные ионные пары и свободные карбанионы реагируют приблизительно с одинаковыми скоростями, однако реакционная способность тесных ионных пар значительно ниже одновременно наблюдается сложная зависимость от противоиона и от растворителя. Стереохимия анионной полимеризации также изменчива. Так, метилметакрилат в присутствии литийорганических инициаторов в растворителях с низкой диэлектрической проницаемостью, например в толуоле, полимеризуется с образованием изотактического полимера. Однако добавление небольших количеств тетрагидрофурана или диметоксиэтана при низких температурах приводит к преимущественному образованию синдиотакти-ческого полимера. [c.560]

    Найденная в [96] связь между величиной бг, характеризующей изменение содержания свободного растворителя в растворе с изменением температуры, и диэлектрической проницаемостью е может быть выражена уравнением вида (II, 1). В ряду Сз из линейной зависимости выпадает только Ы. [c.81]

    Дифференцирование уравнения (7.20) по температуре при постоянном давлении приводит к уравнению (7.27), которое учитывает зависимость диэлектрической проницаемости среды (В) от температуры. Меняя состав растворителя, можно варьировать температуру, одновременно поддерживая диэлектрическую проницаемость постоянной. Тогда [c.177]

    С—СО—, так и в форме —СО—СН—СО— какая из этих двух форм будет более устойчивой, зависит от природы заме-стителей, температуры, а в случае растворенных веществ — от природы растворителя [14]. Изучение кето-енольного равновесия этилформилфенилацетата в восьми растворителях позволило Вислиценусу сделать вывод о том, что в спиртовых растворах преобладает кетоформа, а в хлороформе или бензоле — енольная форма. Он установил, что относительное содержание каждой из таутомерных форм в состоянии равновесия должно зависеть от природы растворителя и его диссоциирующей способности, причем он предположил, что мерой этой способности может служить диэлектрическая проницаемость растворителя. Впервые эти работы были обобщены в обзоре Штоббе [18], который разбил растворители на две группы в зависимости от их способности вызывать изомеризацию соединений, склонных к таутомерным превращениям. В известной степени его классификация соответствует современному делению растворителей на протонные и апротонные. Влияние растворителя на равновесие структурной и таутомерной изомеризации позднее детально изучал Димрот [19] (на примере производных триазола, например 5-амино-4-метоксикарбонил-1-фенил-1,2,3-триазола) и Мейер [20] (на примере ацетоуксусного эфира). [c.22]

    Для вакуума е = 1, для всех остальных сред е > 1. Это означает, что взаимодействие ионов противоположного знака, составляющих кристаллическзгю решетку ионного типа, или взаимодействие положительного и отрицательного полюсов дипольной молекулы в любой среде ослабляется тем сильнее, чем большее ее диэлектрическая проницаемость. Сопоставление данных табл. 9 и 10 показывает, что полярные вещества обычно имеют более высокую диэлектрическую проницаемость по сравнению с неполярными. Однако прямой функциональной зависимости между дипольным моментом молекулы и диэлектрической проницаемостью жидкости, состоящей из этих молекул, найти не удалось. Высокая диэлектрическая проницаемость воды объясняет ее высокую растворяющую способность для ионных кристаллов и полярных веществ, а также диссоциацию на ионы растворенных солей и сильно полярных соединений. С ростом температуры ориентация диполей уменьшается вследствие теплового движения молекул, и диэлектрическая проницаемость растворителей падает, что обычно приводит к снижению степени диссоциации растворенных веществ. [c.210]

    Собраны наиболее достоверные сведения о вязкости, плотности, адиабатической сжимаемости, скорости ультразвука, диэлектрической проницаемости, показателе преломления, поверхностном натяжении и других характеристиках бинарных систем на основе более 150 растворителей в зависимости от состава смеси и температуры. Приводятся аналитические уравнения для интерпретации данных. [c.191]

    Для выяснения характера распределения атомов хлора в ХСПЭ Нерсесян и Андерсен [59] использовали метод кинетического анализа, основанный на различиях в скоростях реакции между хлоридами и аминами в зависимости от структуры хлорида, степени основности амина, диэлектрической проницаемости растворителя и температуры реакции. [c.37]

    Анализ кинетического закона в терминах уравнения Аврами позволяет сделать вывод [27] о соотношении и взаимосвязи процессов, приводящих к структурным и химическим превращениям в системе. Так, если скорости обоих процессов соизмеримы, экспериментальная зависимость глубины превращения от времени позволяет получить информацивэ как о физическом, так и о химическом процессе. Если скорость химического процесса существенно ниже, чем физического, кинетика реакции отражает истинно химическую сторону процесса. В противоположном случае, когда процесс структурирования запаздывает, он все же может оказать косвенное влияние и на химический процесс через изменение подвижности молекул, диэлектрической проницаемости среды, экранирование активных центров и т. п. В работе [27] приведены примеры процессов различного типа применение растворителя, изменение температуры, проведение процессов полимеризации в присутствии агентов передачи цепи — все эти способы позволяют переводить процесс из одного режима в другой. Что касается трехмерной полимеризации, то на примере диметакрилатов триэтиленгликоля (ТГМ-3) и бш -триэтиленгликоль-фталата (МГФ-9) показано, что в широком интервале глубин превращения [c.100]

    Как видно из табл. 5, зависимость Д// с = f T) для растворов Ка и галогенидов тетраалкиламмония в спиртах носит экстремальный характер. Объяснение этому факту можно дать, рассмотрев основные вклады в процесс растворения от разрушения структуры растворителя ионами электролита и от сольватации (взаимодействия ионов с молекулами растворителя). Следует отметить, что температурная зависимость Д// с Для растворов электролитов в неводных растворителях изучена мало, а имеющиеся немногочисленные данные противоречивы. Так, в работах [18, 19] установлено возрастание экзотермичности при растворении На в метаноле и этаноле при Т > 283 К. Связывается это представление с отсутствием у спиртов такой выраженной структуры, какой обладает вода. Измерения, выполненные Мастрояни и Криссом [20] для ЫаСЮа в метаноле в интервале температур 268—323 К, показали, что для этой соли Д// с увеличиваются с понижением температуры. Отмечена инверсия зависимостей ДЯ с = /("О при разных температурах в области малых концентраций соли ( 0,005 т), которая объясняется авторами сильным влиянием температуры на предельный ограничительный наклон (вследствие изменения с температурой диэлектрической проницаемости растворителя). Обнаруженное увеличение экзотермичности растворения электролитов в метаноле, этаноле и н-пропаноле при пош1женных температурах позволяет предполагать, что разрушение структуры спиртов ионами электролита носит локальный характер. В случае ацетона это выражено более явно. [c.163]

    Подобное объяснение представляется весьма правдоподобным и для растворов Li l, об этом свидетельствуют константы ионной ассоциации. Однако данные об изменении констант ассоциации NaJ в спиртах при различных температурах показывают, что если в высших одноатомных спиртах /Сас иодида натрия увеличивается с ростом температуры [44], то в метиловом и этиловом спиртах в интервале 273—313 К она практически не меняется [45]. Эти результаты дают возможность полагать, что температурное изменение диэлектрической проницаемости растворителя не является единственной причиной того или иного хода температурной зависимости его активности. [c.177]

    По результатам измерения электрофизичес1сих характеристик остатков и битумов даже при температуре выше 250 °С в них сохраняются структурные образования. Диэлектрическая проницаемость нефтяных остатков и полученных из ешх битумов при повышении температуры увеличивается. Такое поведение обратно 1Ю-ведению обычных веществ, диэлектрическая проницаемость которых при повышении температуры уменьшается. Характер температурной зависимости диэлектрической проницаемости и тангенс угла диэлектрических потерь свидетельствует о преобладании в остатках и брпумах дипольно-релаксационной поляризации, характерной для молекул с постоянным дипольным моментом. При изменении температуры наблюдается экстремальное изменение диэлектрической проницаемости и тангенса угла диэлектрических потерь. Прохождение этих величин через экстремумы при изменении температуры связано с критическими фазовыми переходами (образованием новых фаз). Структурные образования сохраняются и при растворении нефтяных остатков даже в таком хорошем растворителе, как бензол. Исследования диэлектрических характеристик бензольных растворов компонентов нефтяных остатков и битумов показали, что между смолами и асфальтенами проявляются более сильные взаимодействия, чем между отдельными частицами только смол или асфальтенов. Мольная поляризация комплекса из смол и асфальтенов может периодически изменяться. Величина этих изменений определяется мольным соотношением между смолами и асфальтенами и является кратной 0,25 моля асфальтенов. Аналогичная картина наблюдается и при изменении концентрации асфальтенов в системе масла—смолы—асфальтены. [c.756]

    Во-первых, жидкокристаллические растворители имеют низкую диэлектрическую проницаемость, что, с одной стороны, ограничивает растворимость в них большинства электролитов, а с другой — смещает равновесие между свободными ионами и ассоциатами в сторону образования ионных ассоциатов. Во-вторых, наличие анизотропии вязкости и диэлектрической проницаемости обусловливает зависимость электропроводности от направления ориентации жидкокристаллической фазы относительно приложенной э. д. с. В-третьих, особые реологические свойства нематических жидкостей, в частности резкое изменение вязкости вблизи температур фазовых переходов, сильно влияют на процессы переноса ионов электролитов. В-четвертых, конструкция жидкокристаллических ячеек (тонкий слой нематического жидкого кристалла, заключенного между нлосконараллель-нымн электродами) такова, что различие в размерах приэлектродных пространств и области объемной электропроводности невелико это затрудняет разграничение объемных и электродных процессов. В-пятых, специфические трудности очистки жидкокристаллических вешеств, а также недостаточно высокая химическая стабильность ряда жидкокристаллических материалов приводят к тому, что собственная остаточная электропроводность растворителя зависит от внешних условий, меняется во времени и с трудом поддается контролю. [c.55]

    Растворы в колбах доводят до метки дистиллированной водой и перемешивают. Полученные растворы последовательно наливают в кондуктометрическую ячейку и измеряют их сопротивление Я. Измерения проводят при температурах 25 и 50 °С. Рассчитывают удельную электропроводность я. По табл. 5 (в приложении) находят диэлектрическую проницаемость е и предельную высокочастотную электропроводность водноорганического растворителя. Строят графики зависимости удельной электропроводности смеси от содержания органического компонента, диэлектрической проницаемости водно-органической смеси и предельной электропрозодности растворителя. На основании полученных ре.зультатов делают вывод о влиянии орга 1И-ческих веществ на электропроводность электролитов. [c.85]

    При дан ных температуре и ионной силе раствора средняя степень гидратации комплексов в водной фазе остается постоянной, даже если изменяются их равновесные онцентрации. Обычно яе-гидратированяые комплексные частицы экстрагируются в органические растворители с низким значением диэлектрической проницаемости. В некоторых случаях для экстракции оказывается благоприятным образование сольватов с органическим растворителем (синергический эффект, ср. ра зд. 4.3.2). Существование. многоядерных комплексов типа МтЬ установлено путем обнаружения зависимости экстракции от суммарной шнцентрацни. металла в водном растворе. Для большинства хелатов образования много-ядерных комплексов вообще не наблюдается, в то время как в случае систем ионных ассоциатов они появляются при См>Ю М. [c.166]

    И др. [54, 55], касающиеся различных систем хлористый алюминий—галогенилалкил. Они представляют существенный интерес благодаря обнаружению необычной зависимости степени полимеризации от условий реакции — концентрации мономера, температуры и природы растворителя. Результаты этих исследований сводятся к следующему. При полимеризации изобутилена в полярных средах с диэлектрической проницаемостью 13—17 характер зависимости степени полимеризации от концентрации мономера непосредственно связан с температурой процесса. Ниже —50° с увеличением концентрации мономера степень полимеризации уменьшается, выше —40° она растет. В промежуточной области найдена температура, при которой Р не зависит от [М]. Эта температура, названная температурой инверсии, лежит для рассмотренных случаев около —45° (рис. 89). Увеличение степени полимеризации с уменьшением концентрации мономера, когда процесс проводится ниже температуры инверсии, отмечается вплоть до концентрации мономера порядка 15 мол.%. Только дальнейшее уменьшение концентрации мономера приводит к нарушению этой зависимости (рис. 90). При полимеризации в неполярных средах зависимость степени полимеризации от концентрации мономера имеет в области низких температур тот же характер, что и в полярных растворителях. С повышением температуры наблюдается тенденция к значительному уменьшению этой зависимости, но явление инверсии отсутствует. Для объяснения обнаруженных особенностей авторы этих исследований делают следующие допущения 1) растущие цепи представляют собой слабо диссоциированные ионные пары (У-ЗО) 2) реакция роста протекает только с диссоциированной формой, причем каждый акт роста приводит к недиссоциированпой ионной [c.329]

    В экспериментальном отношении методика определения дипольного момента в разбавленных растворах является более простой и доступной. Практически эксперимент сводится к измерению диэлектрической проницаемости и плотности 4—6 разбавленных растворов исследуемого соединения при одной температуре, примерно в интервале концентраций растворенного вещества от 0,001 до 0,01 или от 0,02 до 0,10 мольных долей [20], При выборе интервала концентраций руководствуются соображениями необходимой точности измерений, а также растворимостью изучаемого вещества в данном растворителе. Затем по формуле (II. 18) находят значения молекулярной поляризации раствореииого вещества для каждой концентрации и по полученным данным строят кривую зависимости Рг от концентрации. Для исключения эффекта остаточного взаимодействия между молекулами растворенного вещества экстраполируют Рг до нулевой концентрации ( 2=0) и находят значение молекулярной поляризации при бесконечном разбавлении Ргос  [c.49]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость растворителей зависимость от температуры: [c.460]    [c.245]    [c.254]    [c.357]    [c.176]    [c.180]    [c.28]    [c.150]    [c.395]    [c.413]    [c.204]    [c.27]    [c.294]    [c.73]    [c.76]    [c.137]    [c.241]   
Анионная полимеризация (1971) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Диэлектрическая проницаемость и температура

Зависимость о от растворителя

Проницаемость и температура

зависимость от температур



© 2025 chem21.info Реклама на сайте