Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические неорганических веществ

    IV. ОСНОВНЫЕ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ В СТАНДАРТНЫХ УСЛОВИЯХ [c.605]

    В книге в систематической форме описаны как точные, так и приближенные методы расчета основных термодинамических свойств веществ и термодинамических параметров химических реакций (теплового эффекта реакций, константы равновесия, изменения энтропии и др.). Наряду с изложением теоретических основ методов, значительное внимание уделено практическому их применению. В книге рассматриваются также характерные особенности термодинамики химических реакций при высоких температурах. Описаны важнейшие справочные издания. Приведены таблицы термодинамических свойств химических элементов и большого числа химических соединений (неорганических и органических) при обычных и высоких температурах. Во 2-е издание книги (1-ое вышло в 1970 г.) введены сведения о новых справочных изданиях и экспериментальных работах, содержащих новые данные. Исправлены описки и ошибки, внесены некоторые новые значения термодинамических величин. [c.2]


    Развитие термодинамики неорганических соединений шло в первую очередь в направлении исследования процессов цветной металлургии, хлорирующего обжига, металлотермии, металлургии титана, циркония и ряда более редких элементов. Вместе с тем методы термодинамики начинают использоваться и при изучении различных проблем геологии. Повышение интереса к химии высоких температур привело к усиленному изучению термодинамических свойств веществ при высоких и очень высоких температурах. [c.20]

Таблица 15. Термодинамические параметры фазовых переходов неорганических веществ....................426 Таблица 15. <a href="/info/1327550">Термодинамические параметры фазовых переходов</a> неорганических веществ....................426
    Вычислите произведение растворимости ПР для Ag Ga. Для расчета используйте значение стандартных термодинамических свойств неорганических веществ, приведенных в справочнике [М.]. [c.302]

    Приложение VII. Основные термодинамические константы некоторых неорганических веществ в стандартных условиях [c.240]

    Известно, что расчет термодинамических свойств веществ из спектральных данных может быть произведен в том случае, если известны строение молекул этих веществ и их колебательные спектры. Был предложен метод расчета термодинамических свойств органических и неорганических соединений без знания их колебательных спектров. Авторы показали, что колебательные спектры обладают свойствами аддитивности. Это позволяет по известной структуре н колебательным спектрам нескольких веществ вычислить недостающие данные для всего гомологического ряда соединений, используя следующее выражение  [c.41]

    Согласно анализу справочных данных по термодинамическим свойствам, устойчивость неорганических веществ и соединений в стандартных условиях в подавляющем большинстве случаев (-99%) определяется энтальпией образования. Энтальпийная составляющая химической связи также лежит в основе расчетов методами квантовой химии. Таким образом, результаты системных исследований форм углерода на основе данных по термохимической устойчивости должны обладать достоверностью и возможностью сравнения с теоретическими расчетами энергетики переходов из одной формы в другую. [c.179]


    Единая общепринятая теория концентрированных растворов пока отсутствует, что затрудняет рассмотрение с физико-химической и технологической точек зрения всех аспектов статики и кинетики превращений веществ в процессах химико-технологической переработки. Накопленный физико-химический материал по теоретическому обоснованию свойств, структуры, термодинамической оценке параметров компонентов раствора при учете влияния концентрации, химических взаимодействий, температуры и давления позволяет в отдельных случаях достаточно полно оценить статическое состояние, т. е. состояние системы при равновесии. Это имеет большое значение для процессов растворения, кристаллизации, поглощения и выделения газообразных реагентов в многокомпонентных системах, обрабатываемых при получении неорганических веществ. В этой главе рассмотрены некоторые свойства растворов электролитов, важные для технологии. [c.73]

    В 30-Х годах становится все более общепринятым проводить термодинамическое исследование реакции, предполагаемой к постановке или уже используемой на производстве, с целью выяснения наиболее благоприятных условий для достижения хорощего выхода. Это сопровождается дальнейшим расширением справочных данных по термодинамическим свойствам веществ и термодинамическим параметрам реакций. Выходит первая большая критически составленная сводка значений теплот образования неорганических соединений, выпущенная Биховским и Россини в которой данные разных авторов приведены в основном в единую систему. [c.20]

    Применение машинной техники при расчетах термодинамических функций методами статистической термодинамики сильно облегчило получение новых данных. В настоящее время большую часть новой информации в этой области, в особенности для высоких температур, получают с помощью электронных счетных машин. На основе результатов, полученных разными методами, создаются справочные сводные таблицы, содержащие взаимно согласованные значения основных термодинамических свойств веществ для разных условий их существования. В первую очередь такие таблицы были разработаны для углеводородовпозднее и для ряда других групп неорганических и органических соединений. [c.20]

    Термохимические таблицы, изданные под редакцией Сталла (1965 г.), содержат сводку данных о различных термодинамических свойствах большого числа веществ при 298,15 К и высоких температурах (до 6000 К). В 1966 и 1967 гг. вышли дополнения таблиц 22 и позднее 2-е издание, в котором ряд данных был обновлен и включены новые вещества и частицы. Это издание содержит данные примерно для 1100 преимущественно неорганических веществ, различных их форм состояния и различных частиц — атомов, молекул, радикалов, их ионов и др. Для каждого из них приведены значения Ср, 5т — (Сг — Я29з)/Т , АЯ г и AGf.т иJg/< f, г для обширной области температур. (Для значительной части веществ и частиц расчет произведен от О до 6000 К.) Приведены обоснова- [c.76]

    Термодинамические свойства органических соединений обладают некоторыми специфическими закономерностями, связанными с гомологическими рядами. Поэтому органические соединения рассмотрены отдельно (главы VI и УП), а в настоящей главе описываются лищь закономерности и методы расчета, общие для всех химических соединений, а также закономерности и методы, относящиеся только к неорганическим веществам. [c.88]

    Параметр А меняется в довольно широких пределах. Для метана Л 4. Почти ту же величину имеют одноатомные жидкости - сжиженные инертные газы (кроме гелия, для которого играют роль квантовые эффекты /34/). Простая молекула метана похожа на одноатомную, метан и инертные газы образуют группу термодинамически подобных веществ. С увеличением числа атомов в молекуле параметр А M .iOTOHHO убывает. Для октана /4 л/ 1, для эйкозана А 0,2 (однако значения А для углеводородов с числом атомов углерода, большим 10, не очень достоверны из-аа отсутствия сведений о критических параметрах). Таким образом, углеводородьт даже одного рода алканов схватывают практически весь сколько-нибудь изученный диа-пазон значений определяющего критерия. Это делает данный класс соединений удобным объектом для изучения, для выявления общих закономерностей, свойственных не только ему самому, но и гораздо более широкому классу соединений - неассоциированным органическим и недиссоциирующим неорганическим.  [c.33]

    Изложены теоретические основы важнейших для неорганической химии экспериментальных методов исследований, включающие методы излучения структуры и определения термодинамических характеристик вещества описаны особенности постановки эксперимевта и применяемая аппаратура приведены примеры экспериментов по ряду методов. [c.2]

    В заключение отметим, что рассмотренные вопросы составляют теоретический фундамент неорганической химии, на котором базируется изучение других ее разделов — химии элементов и их соединений, неорганического синтеза и методов исследования неорганических веществ. Между всеми разделами современной неорганической химии имеются глубокие внутренние связи, описываемые комплексом общих методов исследования структурного, термодинамического и кинетического. Применение только одного из них не дает полной картины процесса. Например, скорости реакции определяются не только кинетическими особенностями процесса, но и структурным соответствием между характеристиками, орбитальной симметрией реагентов и продуктов реакции (правило Р. Вудворта и Р. Гоффмана, 1965). Если соответствие имеется, реакции протекают легко, если соответствия нет —реакции протекают крайне медленно. [c.291]


    Посвящено теории технологических продессов производства неорганических веществ. На основе термодинамического анализа свойств веществ и законов кинетики химических реакций определены рациональные условия проведения промышленных процессов и показаны пути их интенсификации. [c.2]

    Экстракция неорганических веществ — сложный физико-химический процесс, связанный с различными реакциями в растворах и переносом вещества через поверхность раздела фаз. Растворенное вещество распределяется между фазами в определенном закономерном соотношении. Закон распределения, открытый М. Бертло и Юнгфлейшем и обобщенный В. Нерстом, можно формулировать так растворенное вещество распределяется между двумя несмешивающнмнся фазами так, что отношение равновесных концентраций вещества в обеих фазах не зависит от общей концентрации, если в каждой фазе вещество имеет один и тот же молекулярный вес. Закон В. Нернста не является строго термодинамическим и выполняется в частных случаях для разбавленных растворов (1 Ю З—1 10 моль/л)  [c.332]

    Термодинамические свовства некоторых неорганических веществ прн 1 атм и 298 К [c.234]

    Легко заметить, что в таких реакциях одним из получающихся продуктов является какое-либо простое и очень прочное неорганическое вещество НС1—при хлорировании, NaBr—при реакции Вюрца, Naj Og—при получении метана из уксуснокислого натрия, HgO—при нитровании. Именно образование этих соединений, в первую очередь и обусловливает выделение энергии (тепла), а тем самым и направление хода реакции. Таким образом, например, хлорирование метана вызывается большим сродством хлора к водороду, ведущим к образованию НС1, а получающийся при этом H3 I с термодинамической точки зрения является лишь своего рода побочным продуктом . [c.58]

    Подробный обзор физических и термодинамических свойств TI I4 приведен в работе [Ш], обзор реакций TIGI4 с органическими и неорганическими веществами дан в работе [112]. [c.544]


Библиография для Термодинамические неорганических веществ: [c.202]    [c.464]    [c.611]    [c.95]    [c.310]    [c.310]    [c.377]    [c.464]    [c.76]    [c.581]    [c.85]    [c.222]    [c.218]    [c.6]   
Смотреть страницы где упоминается термин Термодинамические неорганических веществ: [c.464]    [c.295]    [c.531]    [c.300]    [c.273]   
Методы практических расчетов в термодинамике химических реакций (1970) -- [ c.76 , c.365 , c.461 ]




ПОИСК





Смотрите так же термины и статьи:

неорганических веществ



© 2025 chem21.info Реклама на сайте