Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные физико-химические и термодинамические свойства

    Ниже приведены основные физико-химические и термодинамические свойства хлора  [c.25]

    Применительно к задачам химической технологии все данные обычно подразделяются на несколько баз данных, основными из которых являются базы Физико-химические, термодинамические и теплофизические свойства компонентов и смесей , Оборудование и Технологические решения . Очевидно, состав данных в базе определяется уровнем задач, решаемых САПР. По мере расширения функций САПР в соответствующие базы могут добавляться и необходимые данные. Формирование баз данных является одной из ответственных задач, поскольку необходимо не только определить состав базы, но и выработать однозначную терминологию, согласованную с пользователями. Помимо этого, к базам предъявляются определенные требования, исходя из которых формируются способы представления информации, обеспечивается их достоверность. [c.114]


    Применительно к задачам химической технологии все данные обычно подразделяются на несколько баз данных, основными из которых являются базы Физико-химические, термодинамические и теплофизические свойства компонентов и смесей , Оборудование и Технологические решения . Очевидно, состав данных в базе определяется уровнем задач, решаемых САПР. По мере расширения функций САПР в соответствующие базы могут добавляться и необходимые данные. [c.75]

    ОСНОВНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ХЛОРИСТОГО ВОДОРОДА [c.178]

    Значения стандартной энтальпии образования при 25 °С из элементов в их стандартных состояниях для ряда соединений приведены в табл- VI. VI.10. Значения для этих таблиц в основном взяты из справочника Избранные значения химических термодинамических свойств , выпущенного Бюро стандартов США в виде циркуляра 500 (1952). Значения стандартной энтальпии приведены также в Справочнике по химии и физике и в других справочных изданиях. Избранные [c.647]

    В книге изложены основные физико-химические и термодинамические свойства газообразного и жидкого хлора и термодинамические основы процесса его сжижения, а также особенности сжижения технического хлоргаза. Рассмотрены промышленные методы и технологические схемы сжижения и условия достижения оптимальных коэффициентов сжижения, описаны конструкции основных аппаратов и машин (компрессоры, конденсаторы, испарители и др.). [c.2]

    Справочник азотчика издается в двух томах. В I томе, состоящем из пяти разделов, в разделе Основные физико-химические свойства газов и жидкостей приведены термодинамические свойства, растворимость, сжимаемость и некоторые другие константы применяемых и получаемых газов и жидкостей. [c.8]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]


    ОСНОВНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА [c.92]

    Считая, что возникновение компенсационного эффекта в воде объясняется физико-химическими свойствами водородных связей. Можно утверждать, что значения энтальпии взаимодействия, в основном, будут определяться энергетическим балансом связей, образованных участниками реакции до и после взаимодействия, причем приоритетное место среди них занимают Н-связи. Это предположение подтверждается тем фактом, что Н-связи рецептора и субстрата уже сформированы молекулами воды еще до начала реакции. С другой стороны, процесс реорганизации молекул воды, который вносит основной вклад в изменение значений энтропии комплексообразования, является перераспределением Н-связей. Таким образом, считая, что значения и контролируются переустройством водородных связей, которое происходит в процессе взаимодействия "хозяин-гость", изменения обоих термодинамических параметров соотносятся между собой в соответствии с одинаковыми термодинамическими правилами. Другими словами, любое уплотнение межмолекулярных связей (энтальпийный фактор) компенсируется потерей степеней свободы (энтропийный фактор). [c.249]

    Основные физико-химические и термодинамические свойства сжиженных углеводородных газов приведены в табл. 2. [c.9]

    Как будет показано в главе 7, нулевая энергия входит в виде очень существенного слагаемого в термодинамические функции, определяющие многие основные физико-химические свойства тел, а также условия протекания их реакций. Изменения в величинах нулевой энергии влияют на летучесть, константу равновесия, скорость реакций и т. д. Различия в этих свойствах, вызванные заменой одного изотопа другим, были с большим успехом использованы для их разделения. [c.55]

    С анализом физико-химических и термодинамических свойств имеет целью существенно автоматизировать этап выбора способа ведения процесса и разработки технологической схемы. К основным задачам анализа равновесия следует отнести следующие вопросы. [c.103]

    Кремер В. А., Зареченский М. А. Исследование кислотно-основных равновесий с участием различных форм сульфидной серы в водных растворах и их термодинамических характеристик методом pS-мет-рии.— В кн. Растворы флотационных реагентов. Физико-химические свойства и методы исследования. М., Недра, 1973, с. 86—109. [c.176]

    В данном разделе рассмотрен ряд более или менее сложных систем, изучение которых с помощью лишь одного термодинамического метода является затруднительным. Вы познакомились с основными чертами физико-химического анализа, который широко использует построение различных диаграмм состояния. С помощью таких диаграмм удобно описывать свойства системы в различных условиях. Параллельное применение термодинамических закономерностей позволяет уточнить представления об изучаемых системах. Всегда следует помнить о том, что большей частью рассматриваются лишь равновесные системы. Именно для равновесных систем изображаются соответствующие диаграммы состояния. Количество и конкретный вид фаз сложной системы, наблюдаемые на практике, могут в действительности сильно отличаться от равновесных вследствие заторможенности перехода в равновесное состояние. [c.175]

    Основным источником справочных сведений о термодинамических свойствах веществ, необходимых для решения задач, может служить отлично зарекомендовавший себя и многократно переизданный "Краткий справочник физико-химических величин" [30 . Если в условии задачи приводятся не все данные, необходимые для расчетов, то в большинстве случаев авторы ориентировались на этот справочник для получения результатов, представленных в ответах. Использование других термодинамических справочников (например, наиболее авторитетных, но менее доступных [31, 32]) может привести к ответам, численно отличающимся (вряд ли значительно) от приведенных. [c.5]

    Термодинамика играет важнейшую роль при изучении фазовых равновесий и фазовых процессов в гетерогенных системах. Термодинамическая теория дает макроскопическое описание физико-химических свойств гетерогенных систем и позволяет установить закономерности фазового равновесия, связанные с основными принципами термодинамики. С другой стороны, термодинамические уравнения находят применение при разнообразных расчетах. В частности, они позволяют рассчитать одни физические величины по экспериментальным данным о других и создают тем самым основу для косвенных экспериментов. Помимо этого, термодинамические соотношения используют для проверки экспериментальных данных и для непосредственного расче га фазовых равновесий, когда имеются формулы статистической термодинамики или полуэмпирические формулы, выражающие зависимость термодинамических функций от параметров состояния. [c.7]


    Каждому веществу присущ набор специфических свойств — объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ, К наиболее характерным физико-химическим свойствам относятся константы — плотность, температура плавления, температура кипения, термодинамические характеристики, параметры кристаллической структуры. К основным характеристикам вещества принадлежат его химические свойства. [c.14]

    Настоящий раздел Справочника (главы I—IV) не претендует на полноту изложения соответствующих материалов. Как правило, в нем рассматриваются только вопросы, непосредственно связанные с расчетами таблиц термодинамических свойств, приведенных в томе П. Соответствующие разделы содержат также указания на основную литературу по каждому конкретному вопросу. Предполагается, что читатель знаком с курсами по физике, физической химии и термодинамике в объеме программ химических или теплотехнических вузов [c.31]

    Основные данные о физических, физико-химических и термодинамических свойствах элементов платиновой группы приведены в табл. XV. 1. [c.999]

    Хладагенты С10М1 нетоксичны, негорючи и по основным физико-химическим, термодинамическим и эксплуатационным свойствам сходны с хладагентом R12. [c.42]

    Удивительным является, что для органических соединений,-кроме углеводородов и серусодержащих веществ, таких сводок до недавних пор не было . Для углеводородов есть обширный экспериментальный и расчетный материал по различным термодинамическим свойствам в стандартном состоянии идеального газа при разных температурах от 298,15 до 1000 или до 1500° К и значительно более ограниченный для других состояний. Наряду с калориметрическими методами при получении этих данных были широко использованы методы статистической термодинамики и эмпирический метод групповых уравнений (см. 45), причем в основных справочниках уже не делается указаний, каким методом получены те или иные из приводимых значений. В многотомном справочном издании Физико-химические свойства индивидуальных углеводородов , выходившем под редакцией М. Д. Тиличеева (1947—1955 гг.), в разделах, составленных А. В. Фростом и В. В. Коробовым, была дана сводка материалов, опубликованных в этой области до 1950 г. " . Вскоре (1953 г.) вышел в новом издании сводный справочник Россини, содержащий выборочные значения основйых химических термодинамических свойств углеводородов и некоторых других веществ при 298,15° К и высоких температурах. В советской литературе последних лет примерно такой же материал более или менее полно представлен в книгах А. А. Введенского Н. В. Лаврова, В. В. Коробова и В. И. Филипповой и в сборнике Физикохимические свойства индивидуальных углеводородов , вышедшем под редакцией В. М. Татевского . [c.80]

    Методы численного моделирования молекулярных систем (численного эксперимента) находят все более широкое применение в практике физико-химических исследований. Возникла целая иерархия методов численного эксперимента, позволяющих воспроизводить на ЭВМ различные свойства моделирующих систем — динамические, термодинамические, структурные (см., например, [357, 358]). Стремительный прогресс вычислительной техники и программного обеспечения ЭВМ позволяет создавать все более совершенные методы моделирования, максимально приближающие свойства моделируемых систем к свойствам систем реальных [359, 360]. Однако даже при помощи самой совершенной вычислительной техники невозможно детально моделировать поведение систем, состоящих более чем из нескольких тысяч взаимодействующих частиц. Наиболее удобными объектами моделирования являются системы, состо ящие из сравнительно небольшого числа молекул. В настоящей работе пойдет речь о моделировании кластеров из молекул воды, причем основное внимание будет уделено структурным характеристикам таких кластеров. [c.132]

    Из органических соединенпй наиболее изученными являются углеводороды. В работах Россини, Питцера, Фроста и др. был получен и собран экспериментальный и расчетный материал по различным термодинамическим свойствам в стандартном состоянии идеального газа при разных температурах от 298,15 до 1000 или до 1500 К и значительно более ограниченный для других состояний. Наряду с калориметрическими методами при получении этих данных были широко использованы, методы статистической термодинамики и э.мпирический метод групповых уравнений (см/ 45), причем в основных справочниках уже не делается указаний, каким методо.м получены те или иные из приводимых значений. В многотомном справочном издании Физико-химические свойств а индивидуальных углеводородов , выходившем под редакцией М. Д. Тилпчеева (1947—1955 гг.), в разделах, составленных [c.80]

    Математическое описание равновесия многокомпонентных смесей позволяет выявить как основные закономерности рас-с[ атриваемой системы, так и ее особенности. Это исследование наряду с анализом физико-химических и термодинамических свойств имеет целью существенно автоматизировать этап выбора способа ведения процесса и разработки технологической схемы. К основным задачам анализа равновесия следует отнести сле-д утощие вопросы. [c.59]

    Катализаторы и каталитические реакции. Катализатором называют вещество, многократно вступающее в промежуточное химическое взаимодействие с реагентами, не участвующее в стехиомет-рическо м уравнении реакции, не изменяющее термодинамическое равновесие, но увеличивающее скорость его достижения, т. е. скорость реакции. То, что катализатор не участвует в стехиометриче-ском уравнении реакции, не означает неизменности его состава и свойств. Под влиянием реагентов, примесей к реагентам, основных и побочных продуктов реакции, температуры катализатор всегда претерпевает физико-химические изменения. До момента, когда в результате медленных изменений свойства катализатора начинают существенно отличаться от начальных, продукты реакции образуются в количествах, в 1000 раз и более превосходящих массу катализатора. Иногда в результате взаимодействия с одним из продуктов реакции свойства катализатора изменяются очень быстро, но при удалении этого продукта он восстанавливает свои первоначальные свойства — регенерируется. [c.132]

    В первый том включены производство углеводородного сырья и первичных нефтехимических продуктов основные типы производ. ственной аппаратуры конструкционные материалы и борьба с коррозией процессы разделения и очистки вопросы охраны окружающей среды катализаторы нефтехимического синтеза физико-химические н термодинамические свойства продуктов иефтехиинческого синтеза. [c.2]

    Составителн поставили перед собой цель сформировать у читателя комплексное представление о той или иной проблеме нефтехимического синтеза. С этой целью первый том справочника содержит такие разделы, как технико-экономический анализ отрасли в целом, вопросы подбора антикоррозионных материалов, выбора конструкции аппаратуры. Достаточное место уделено методам разделения смесей, очистки водных стоков и газовых выбросов, характеристике наиболее распространенных катализаторов. Приведены физико-химические и термодинамические свойства основных продуктов. [c.8]

    П. Вклад дисциплины в сквозную программу студента При изучении дисциплины обеспечивается фундаментальная подготовка студента в области расчетов физико-химическик свойств веществ, соблюдается связь с дисциплинами физическая кимия, основные процессы и аппараты химических производств, технология нефти и газа и непрерывная связь в использовании ЭВМ. При расчете свойств веществ происходит знакомство со стержневыми проблемами теоретических и сравнительных методов расчета, базовыми положениями аналитических уравнений состояния, парогазожидкостного равновесия в многокомпонентных системах и термодинамических свойств идеальных и реальных систем, навыками и понятиями инженерных расчетов свойств реальных нефтянык систем, обязательными для прочного усвоения последующих дисциплин и практического использования полученных знаний в рещении задач курсового, дипломного и реального проектирования установок НПЗ. [c.366]

    Знакомством с энтропией завершилось изучение основных законов тсрхгоди-намнки. Руководствуясь ими, можно производить полный анализ физико-химических процессов любой термодинамической системы определять энергетические эффекты, сопровождающие рассматриваемые процессы выяснять направление процессов предсказывать возможные физические изменения в системе и т. д. Но для решения поставленных задач необходимо, по крайней мере, иметь общие представления о физических свойствах рассматриваемой системы, а еще лучше — знать уравнение состояния этой системы. Без этих сведений невоз.уюжно получить конкретные результаты, а любые допущения приводят к соответствующим отклонениям от действительности. [c.102]

    Получаемые тем или иным способом газы всегда бывают загрязнены примесями сопутствующих газов, которые могут попасть в чистый газ вследствие протекания побочных реакций или загрязнений извне. Чистота газа и соответственно выбор метода его очистки определяются е зависимости от намечаемого применения газа. В большинстве случаев при использовании газов для препаративных работ наличие небольшого количества примесей не мешает и применения специальных методов очистки, кроме высушивания и удаления основных примесей, не требуется. Значительно более строгие требования к чистоте газов предъявляются при проведении различных физических и физико-химических исследований. Во многих слуузлх наличие незначительного количества примесей, порядка десятых, сотых или даже тысячных долей процента, уже может оказать специфическое влияние на течение газовых реакций (в частности, каталитических), при-проведении термодинамических и других исследований свойств газов и т. д. [c.43]

    Несмотря на определенные результаты, проблема направленного подбора растворителя с учетом природы нефти и АСПО в конкретных условиях далека от разрешения. В настоящее время выбор растворителей АСПО, как правило, проводится полуэмпирически. Этому препятствует недостаточное знание термодинамических и физико-химических основ направленного подбора растворителей. Кроме того, существует недостаток информации о составе, структуре и свойствах основных компонентов АСПО - асфальтенов и нефтяных смол, и детальном механизме их взаимодействия с растворителями. [c.27]

    Получение и исследование адсорбентов с хорошо воспроизводимыми свойствами и с возможно более однородной поверхностью в последнее десятилетие приобретает все большее значение как для развития молекулярной теории адсорбции [1—34], так и для практических применений в адсорбционной хроматографии [И, 18, 20, 25, 26, 33—49]. Термодинамические адсорбционнце свойства таких адсорбентов могут быть представлены в виде характеризующих систему адсорбат — адсорбент физико-химических констант [7, 11, 21, 24, 33, 44—49]. Только такие константы, неосложненные не-воспроизводимостью строения поверхности адсорбента и влиянием сильной и неконтролируемой ее неоднородности, могут быть использованы для установления основных закономерностей проявления межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат в создаваемом адсорбентом поле межмолекулярных сил. Используя такие физико-химические константы, можно исследовать потенциальные функции межмолекулярного взаимодействия при адсорбции [10, 16, 22, 50, 51], а также исследовать некоторые детали строения молекул [18, 33, 34, 40]. Кроме того, такие характеристики адсорбционных систем позволяют идентифицировать неизвестные вещества методом адсорбционной хроматографии (И, 33, 34]. [c.13]

    Наиболее важная, но и наиболее трудная задача в молекулярной теории адсорбции — определение потенциальной функции Ф взаимодействия молекул с поверхностью твердого тола. При однозначном определении этой функции Ф из опытных адсорбционных данных и при строгих ее квантовомеханических расчетах встречаются серьезные трудности. Вместе с тем приближенные, основанные на достижениях полуэмппрической теории межмолекулярных взаимодействий, расчеты потенциальных функций Ф для взаимодействия молекул разного строения с однородной поверхностью многих твердых тел, использующие физико-химические свойства адсорбата и адсорбента, приводят к значениям термодинамических характеристик адсорбции, находящимся в удовлетворительном согласии с опытом. Особенно хорошие результаты получены при взаимодействии различных молекул с поверхностью неполярных твердых тел — неспецифическнх адсорбентов, когда основными силами притяжения являются дисперсионные. В случае сложных молекул, состоящих из нескольких сортов силовых центров, например молекул углеводородов, для повышения точности приближенных расчетов Ф в настоящем этапе, по-видимому, целесообразно производить уточнение параметров потенциальных функций ф взаимодействия силовых центров молекулы с поверхностью, используя опытные адсорбционные данные для небольшого числа молекул, состоящих из тех же силовых центров. Эти уточненные потенциальные функции ф далее могут быть использованы для предсказания энергий и термодинамических характеристик адсорбции других молекул, состоящих из этих же силовых центров на том же адсорбенте. [c.20]

    В советской литературе методы расчета основных термодинамических параметров реакций и свойств химических соединений (в том числе и органических) подробно изложены в книгах В. М. Татевский, Химическое строение углеводородов и закономерности в их физико-химических свойствах, Изд-во МГУ, М., 1953 В. М. Татевсаий, В. А. Бендерский и С. С. Яровой, Методы расчета физико-химических свойств парафиновых углеводородов, Гостоптехиздат, 1960 М. X. Нарапетъянц, Методы сравнительного расчета физикохимических свойств, изд-во Наука , М., 1965 В. А. Киреев, Методы практических расчетов в термодинамике химических реакций, изд-во Химия , М., 1970.— Прим. перев. [c.159]


Смотреть страницы где упоминается термин Основные физико-химические и термодинамические свойства: [c.283]    [c.77]    [c.370]    [c.283]    [c.526]    [c.323]    [c.93]    [c.7]   
Смотреть главы в:

Производство хлора и каустической соды -> Основные физико-химические и термодинамические свойства




ПОИСК





Смотрите так же термины и статьи:

Основные физико-химические, и термодинамические свойства хлористого водорода

Термодинамические свойства



© 2025 chem21.info Реклама на сайте