Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стронций окисление

    Металлы, содержащиеся на поверхности катализатора, практически не влияют на скорость выжига коксовых отложений в диффузионной области и существенно ускоряют регенерацию катализатора в кинетической области. Исследованные нами металлы по степени убывания их воздействия на скорость окисления кокса в кинетической области располагаются в следующий ряд хром> >ванадий>литий>молибден, медь, натрий>железо>кобальт, никель>бериллий, магний, кальций, стронций>калий>цезий> >свинец. [c.180]


    К щелочноземельным металлам относят элементы главной подгруппы II группы периодической системы кальций Са, стронций 8г, барий Ва и радий Ка. Кроме них, в эту группу входят бериллий Ве и магний Mg. На внешнем слое атомов щелочноземельных металлов находится два я-электрона. Во всех соединениях они проявляют степень окисления +2. Активность металлов растет с увеличением атомного номера. Все эти элементы — типичные металлы, по свойствам близкие к щелочным. [c.146]

    Действие окислителей и восстановителей. Катионы бария, стронция, кальция, магния, алюминия устойчивы по отношению к окислителям и восстановителям. Ионы марганца, хрома (III), железа (И) и (III) и висмута (III) вступают в реакции окисления и восстановления как в кислой, так и щелочной средах. В щелочной среде хлор, бром, перекись водорода, гипохлорит, двуокись свинца, перманганат окисляют ионы хрома (III) в хромат, а в кислой среде — в бихромат. [c.39]

    Изменение стандартных потенциалов от —1,696 в у Ве до —2,92 в у Ка указывает на усиление восстановительной активности этих металлов в водных растворах, возрастающей от бериллия к радию. Бериллий и в меньшей мере магний отличаются по своим свойствам от остальных элементов группы. Бериллий окисляется кислородом при обычных температурах лишь с поверхности, поскольку образующаяся при окислении плотная защитная пленка ВеО мешает дальнейшей реакции. По этой же причине бериллий не реагирует с водой. Магний реагирует с водой, но весьма медленно, так что скорость реакции становится легко измеримой только при высоких температурах. Но все же магний считается металлом недостаточно устойчивым по отношению к влажному воздуху и к воде. Поэтому из чистого магния конструкционные детали не выполняются. Кальций, стронций, барий, радий окисляются кислородом воздуха очень активно и полностью, поэтому их, как и щелочные металлы, нужно [c.193]

    Отношение к кислороду. В обычных условиях кислород окисляет только поверхность компактных бериллия и магния, так как возникающая при этом пленка оксида предохраняет металл от дальнейшего окисления. Эти металлы можно хранить в обычных условиях. Кальций взаимодействует с кислородом более энергично, поэтому его хранят в таре без доступа воздуха. Стронций, барий и радий особенно энергично реагируют с кислородом. Как и щелочные металлы, их хранят под слоем керосина, парафинового масла или в запаянных сосудах. При высоких температурах все эти металлы сгорают в кислороде (воздухе), образуя оксиды  [c.46]


    Отношение к другим окислителям. Щелочноземельные металлы могут быть при нагревании окислены галогенами, серой, фосфором и др., но практического значения эти реакции не имеют. При окислении водородом кальция, стронция и бария при высокой температуре [c.46]

    Активность взаимодействия с водой не для всех металлов одинакова. Бериллий окисляется только при высокой температуре, причем образующаяся корка гидроксида плотно пристает к поверхности металла и предохраняет его от дальнейшего окисления. Л агний окисляется на холоду медленно. У кальция, стронция, бария и радия по мере возрастания порядкового номера реакция с водой происходит все более энергично, и последние металлы реагируют так же энергично, как и щелочные. [c.253]

    Элементы подгруппы окисляются кислородом. Наличие прочного слоя оксида на поверхности бериллия и магния предохраняет их от дальнейшего окисления, поэтому эти металлы можно хранить на воздухе в обычных условиях. Способность к окислению остальных металлов возрастает от кальция к радию. Кальций взаимодействует с кислородом более энергично, чем магний, а стронций, барий и радий — еще энергичнее и поэтому их хранят, подобно щелочным металлам, под слоем керосина. При высоких температурах все металлы, кроме бериллия, окисляются энергично, остальные элементы подгруппы способны окисляться непосредственно водородом с образованием гидридов  [c.246]

    Некоторым атомам обычно приписываются постоянные степени окисления. Например, степень окислеиия фтора в соединениях всегда равна —1, лития, натрия, калия, рубидия, цезия и франция +1, магния, кальция, стронция, бария и цинка +2, алюминия - -3. [c.58]

    Решение. Элемент стронций находится в главной подгруппе И группы следовательно, в соединениях он имеет одну степень окисления +2. Галлий находится в главной подгруппе П1 группы следовательно, в соединениях он имеет степень окисления + 3. [c.6]

    Элементы бериллий Ве, магний М , кальций Са, стронций 8г, барий Ва и радий Ка составляют ПА-группу Периодической системы Д.И.Менделеева. Элементы кальций, стронций, барий и радий имеют групповое название — щелочноземельные металлы. Валентный уровень атомов элементов ПА-группы содержит по два электрона п8 У, характерная степень окисления этих элементов -(-П. Металлические свойства элементов ПА-группы выражены несколько слабее, чем у элементов 1А-группы. [c.114]

    К щелочноземельным металлам относят кальций (Са), стронций (8г), барий (Ва) и радий (Ка). Кроме них, главную подгруппу И группы входят бериллий (Ве) и магний (Mg). Конфигурация внешнего электронного слоя этих элементов — пз , поэтому для них характерна степень окисления +2. [c.256]

    Назначение. Деактиваторы (инактиваторы, пассивато-ры) металлов — это присадки, подавляющие каталитическое действие металлов на окисление топлив. Деактиваторы, как правило, добавляют к топливу совместно с антиокислителями в концентрациях, в 5—10 раз меньших, чем антиокислитель. Они могут быть также компонентами двух- и трехкомпонентных присадок [1 — 11]. Установлено, что металлы переменной валентности являются сильными катализаторами окисления углеводородных топлив [1—5, II —17]. Металлы постоянно контактируют с топливами — в нефтезаводской, перекачивающей аппаратуре и в двигателях, входят в виде микропримесей в их состав. В топливных дистиллятах обнаружено присутствие алюминия, берилия, ванадия, висмута, железа, золота, кремния, калия, кальция, кобальта, меди, молибдена, натрия, никеля, олова рубидия, серебра, свинца, стронция, титана, цинка и др. [18—21]. [c.122]

    Большинство соеди14ений катионов второй аналитической группы бесцветны и мало растворимы в воде. Окрашенными являются хроматы бария, стронция, кальция и висмута (желтые), соединения марганца высшей степени окисления (четырехвалентного — бурые, шестивалентного — зеленые и семивалентного — ф юлетовые), соли железа (III), хрома (III) и хрома (VI), сульфиды железа (И) и железа (III), иодид, сульфид и роданид висмута. [c.36]

    В русской номенклатуре оксиды называются окислами. Окислы элементов, проявляющих в соединениях постоянную степень окисления, называют окисями например, ЫгО — окись лития, 5г0—окись стронция, А12О3 — окись алюминия. [c.10]

    По этой причине щелочные металлы, стронций, барий и радий нельзя хранить на воздухе их сохраняют в керосине или в заплавленных стеклянных ампулах. Бесцветный газ N0 буреет на воздухе вследствие окисления в бурый диоксид азота, а силан воспламеняется на воздухе. [c.558]

    Раствор подвергают очистке от меди цементацией. Цементацию производят с помощью цинковых листов и цинковой пыли. Содержание меди в растворе в процессе очистки снижают до 0,1—0,2 г/л (более полной очистки производить нельзя, так как начинает цементироваться кадмий). Помимо очистки от меди, раствор в ряде случаев очищают от железа, мышьяка и сурьмы (гидролизом), от свинца (соосаждением с сульфатом стронция). Очищенный раствор направляют на цементацию кадмия. Цементацию производят с помощью цинковой пыли, подающейся в избытке. Цементный кадмий (кадмиевая губка) содержит приблизительно 50% Сс1, 20% 2п, 3% Си. Содержание кадмия в растворе снижается до 0,01 г/л. Этот раствор направляют на электролиз цинка. Полученную кадмиевую губку в металлическом виде или после предварительного окисления направляют на растворение. Для окисления губки ее складывают в штабеля. В процессе хранения в теплом и влажном помещении в течение 2—3 недель кадмий окисляется до Сс10. [c.72]


    Если предполагается раствор 2 подвергнуть анализу на следующий день, то перенесите его в химический стакан или в маленькую ((фарфоровую чашку и немедленно прокипятите (под тягой. до полного удаления HjS, чтобы избежать окисления ионоа S в SO4. В присутствии S04 -HOHOB в осадок выпадают сульфаты бария, стронция и кальция. [c.343]

    При испытании растворимости образовавшегося SrSOg следует иметь в виду, что с льфиты легко окисляются в сульфаты, а осадок, содержащий сульфат стронция, не растворяется в разбавленных минеральных кислотах. Чтобы избежать окисления, необходимо осаждение вести в отсутствие окислителей, окисляющих сульфиты в сульфаты, и избегать нагревания, способствующего окислению SO3 - в SOp-ионы. [c.396]

    Приыер З.Какие степени окисления в соединениях имеют стронций и галлий  [c.6]

    Т. щелочных металлов раств. в разб. к-тах, водой гидролизуются. Остальные Т. не раств. в воде и разб. к-тах, при нагр. разлагаются конц. H2SO4. Т. имеют довольно высокие т-ры плавления, являются диэлектриками, большинство из них отличается высокой диэлектрич. проницаемостью. Т. металлов в степенях окисления -ь2 и +3, а также многие двойные Т.-сегнетоэлектрики. Важнейшие из ийх-бария титанат, свинца титанат, стронция титанат. [c.596]

    ЩЕЛОЧНОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ кальций Са, стронций Sr, барий Ва, радий Ra металлы. Название сохранилось со времен алхимиков, оксиды Щ. э. по хим. св-вам напоминают оксиды и елочных металлов и землю - оксид А1, входящий в состав глин. Щ. э. имеют серебристый металлич. блеск, кристаллизуются в кубич. решетке, для Са, Sr и Ва характерен полиморфизм. На воздухе Щ. э. покрываются голубовато-серой пленкой, содержащей МО, МСО3 и отчасти MOj и M3N2, где М - Щ. э. Т-ры плавления Са, Sr, Ва и Ra равны соотв. 842 3, 768 3, 727 3 и 969 °С. Окисление Щ. э. на воздухе может сопровождаться воспламенением, Ва загорается уже при резке и раздавливании, поэтому Щ. э. хранят под слоем обезвоженного керосина. Все они ковки, пластичны и путем давления и резания м. б. превращены в прут- [c.402]

    С использованием окисленного угля были разработаны методы глубокой очистки большого числа соединений реактиБной чистоты. Среди них растворы целочей, соли калия, натрия, кальция, стронция, магиия, кобальта и цинка. Число очищениых данным методом соединений приближается к тридцати. [c.163]

    Химическая экология природных вод. Химический состав и классификация природных вод. Макрокомпоненты хлорид-, сульфат-, карбо-нат- и гидрокарбонат-ионы, катионы натрия, калия, магния, кальция. Ионы кремния, железа, алюминия, фосфора, азота в разных степенях окисления, органические вещества в природных водах. Микрокомноненты ионы лития, стронция, меди, серебра, хрома, марганца, бромид-, иодид-ионы и их способность к комилексообразовапию. Эколого-химические особенности загрязнения гидросферы. Металлы как загрязняющие вещества источники ностунления в воду, токсические эффекты, химическое состояние. Органические соединения - загрязнители вод разных типов хлорорганические, фосфорорганические соединения. Особенности нефтяного загрязнения. Детергенты в природных водах. Коллоидные ПАВ и их влияние на загрязнение природной воды. [c.4]

    Окисление метил а-D-глюкопиранозида. Раствор 12,5 г метил-а-Л-глюкопиранозида в небольшом количестве дистиллированной воды прибавляют к 250 мл 0,54 М HIO4. Раствор разбавляют водой до 500 мл и оставляют при 20— 25° на 24 ч, после чего точно нейтрализуют горячим раствором гидроокиси стронция в присутствии индикатора фенолфталеина. Осадок перйодата и иодата стронция отфильтровывают и промывают холодной водой. К фильтрату прибавляют 1 г карбоната стронция, упаривают до 50 мл в вакууме при температуре водяной бани 50°, отфильтровывают от карбоната стронция и продолжают упаривание при температуре водяной бани 40° досуха. Остаток экстрагируют холодным абсолютным этиловым спиртом шесть раз по 25 мл. Таким образом, диальдегид полностью отделяется от плохо растворимых солей стронция. Спирт отгоняют в вакууме при температуре водяной бани 40— 45°. Диальдегид получается с количественным выходом в виде бесцветного сиропа. [c.132]

    Дальнейшая переработка осадка производится следующил образом. Оксалат разрушают нагреванием с азотной кислотое я полученный раствор обрабатывают озонированным кислородом для окисления церия до четырехвалентного состояния. Затем церий извлекают в радиохимически чистом состоянии экстракцией органическим растворителелз. Из водной фазы после извлечения церия выделяют стронций соосаждением с нитратом кальция в концентрированной азотной кислоте. Путем последовательных переосаждений осадка нитратов стронций отделяют от кальция, а раствор используют для извлечения радиоактивных редкоземельных элементов. [c.24]


Смотреть страницы где упоминается термин Стронций окисление: [c.168]    [c.638]    [c.174]    [c.54]    [c.384]    [c.385]    [c.374]    [c.109]    [c.212]    [c.302]    [c.172]    [c.216]    [c.34]    [c.175]   
Справочник по общей и неорганической химии (1997) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Стронций



© 2025 chem21.info Реклама на сайте