Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Остаточных газов вакуумных систем источники

    Для выполнения второго требования — создания возможно меньшего фона прибора — необходима специальная конструкция вакуумной камеры. Остаточный газ состоит в этом случае не только из газов, образованных в диффузионном насосе, и газов, выделяющихся со стенок прибора. В него входят также те молекулы, которые поступили через напускное отверстие, но по крайней мере один раз ударились о поверхность. Поскольку эти частицы могут реагировать с веществом поверхности, они не отражают состава реакционной смеси. Для лучшей откачки прибора применена большая ловушка перед диффузионным насосом, работающая на обычном охладителе, например жидком азоте, а также производится прогрев вакуумной системы. Новая вакуумная камера сконструирована таким образом, чтобы большая часть радикалов, прошедших через напускное отверстие, не возвращалась в ионный источник. Для этого позади ионного источника установлена большая емкость, применяется мощный диффузионный насос, приняты меры к тому, чтобы коллектора достигали лишь ионы, образованные электронным пучком в области напротив напускного отверстия. [c.257]


    На рис. 4.2.1 приведена блок-схема масс-спектрометрического прибора 3-5]. Назначение первых двух элементов этой схемы и натекателей — создание направленного пучка ионов с минимальными углом расхождения и разницей энергии для ионов с данным отношением т/е. В анализаторе сформированный ионный луч тем или иным способом разлагается на составляющие по т/е, интенсивность которых затем и регистрируется. Рабочее давление во всех этих блоках прибора различается на много порядков величины, и для обеспечения нужных давлений служит вакуумная система. При этом рабочее давление в системе напуска колеблется в диапазоне 1,5 ч-350 Па, давление в ионном источнике не превышает 1,5 мПа, а в анализаторе и приёмнике ионов — 0,15 мПа. Кроме того, при подготовке прибора для проведения анализа ионный источник, анализатор и приёмник ионов откачиваются до остаточного давления 1,5-ь 15 мкПа (часто — с прогревом ) для минимизации последующего рассеяния пучка ионов и фона прибора от остаточных газов. Натекатели 6 обеспечивают контролируемую скорость подачи газа в ионный источник и анализатор. При этом по типу натекателя, установленного между системой напуска и ионным источником приборы подразделяются на химические (отечественная маркировка — МХ) и изотопные (МИ). В приборах типа МХ реализуется молекулярный режим натекания газа, когда скорость натекания компонентов газовой смеси не зависит от её состава, в приборах типа МИ — вязкий режим, при котором скорость натекания компонентов смеси зависит от её вязкости и, следовательно, состава. [c.90]

    Вакуумной или вентиляционной системы, служащей для обеспечения требуемых остаточных и рабочих давлений, а также скоростей откачки или отвода поступающих реагентов и продуктов реакций в рабочей, транспортной и шлюзовой камерах, автономных источниках стимулирующих воздействий и ХАЧ и состоящей из откачных (отводных) коллекторов или отверстий, труб, клапанов, заслонок, измерителей и регуляторов давлений и скоростей откачки (отвода), ловушек, фильтров, вакуумных насосов, скрубберов или нейтрализаторов выхлопных (отводных) газов. [c.49]

    В зависимости от свойств исследуемого вещества применяются три типа мишеней конденсационные, жидкостные и твердые. При работе с сильнолетучими веществами используются конденсационные мишени, которые приготавливаются в самом ВЭИ-источнике путем конденсации паров исследуемого вещества на охлажденную подложку. Если для исследования берется достаточно чистое вещество, то основным источником загрязнений мишени будут конденсирующиеся компоненты остаточного газа вакуумной системы. Степень загрязнения мишени в этом случае в основном определяется соотношением концентраций молекул исследуемого вещества и конденсирующихся молекул в остаточном газе. При исходном вакууме 10 Па и напуске паров исследуемого вещества до давления 10 Па (вода, аммиак, легкие спирты, бензол и др.) заметных загрязнений мишени не происходит. Этим способом могут быть приготовлены мишени, представляющие собой смесь нескольких веществ. Для этого в ВЭИ-источник напускается газовая смесь нужного состава. При этом надо иметь в виду, что не во всех случаях состав конденсационной мишени будет адекватно отражать состав газовой смеси вследствие различной скорости конденсации компонентов и возможной их кристаллизации, обусловливающей негомоген-ность пленки. [c.183]


    Остаточные газы в системе. Существуют два источника газовыделения в вакуумной камере из образцов и с поверхности отдельных узлов системы при работе движущихся элементов.Основным объектом исследования при изучении процесса раскалывания служил пиролитический графит. Как правило, интенсивность газовыделения была велика, а результирующие спектры — довольно сложны. В случае пиролитического графита в составе остаточных газов были обнаружены метан, углекислый газ, а также осколки более сложных молекул, по-видимому, диолефиновых или ацетиленовых углеводородов СзН , зHt, С3Н7 и С4Н" (рис. 7). Кроме того, было обнаружено незначительное количество окиси углерода, которая содержалась в камере и до внесения [c.213]

    В органической химии подавляющая часть работ выполняется на приборах с ионизацией газовой фазы исследуемого вещества электронами с энергией 10—70 эв. Парциальное давление исследуемого вещества обычно лежит в пределах 10 —10 мм рт. ст. Нижний предел определяется чувствительностью системы, регистрирующей образующиеся ионы, и фоном (остаточным газом) источника, а верхний предел — образованием объемного заряда и ионномолекулярными реакциями. Для изучения соединений с более низкой летучестью источник с электронной бомбардировкой используется в сочетании с вакуумной печью или с прямым (непосредственным) вводом вещества в область ионизации [31, 32]. [c.21]

    Измерения показали, что один регистрируемый за период колебания ион аргона соответствует парциальному давлению аргона 1 10" ммрт. ст. в области ионизации (или 10 ООО ионов в секунду). Уровень шумов электронного умножителя, измеренный в интервале масс, равном единице, составляет около одного импульса, равного по величине импульсу, создаваемому одним ионом, за 10 колебаний, что соответствует парциальному давлению в ионном источнике 1 -10 мм рт. ст. Абсолютная чувствительность, однако, ограничена в действительности не шумами, а составом и количеством остаточного газа в вакуумной системе. Специально не предпринималось никаких мер для достижения максимального вакуума путем длительного прогрева, хотя конструкция прибора позволяет осуществить тако11 прогрев. Мы считали вполне достаточным ограничиться давлением около 1-10 ммрт. ст. Ртутный насос с эффективной ловушкой дает очень низкое парциальное давление газов почти во всей области масс-спектра. [c.255]

    Ионно-распылительные насосы. Ионно-распылительные насосы берут начало от ионизационных манометров Пеннинга. Их функциональными элементами являются ячейки с цилиндрическим анодом, заключенным между двумя катодами (рис. 30). Эта система помещена в магнитное поле. Катоды имеют постоянный отрицательный потенциал относительно анода в несколько киловольт. Электроны, эмиттированные с поверхности катода, ускоряются электрическим полем в направлении к аноду. Магнитное поле сообщает электрону радиальную компоненту скорости и заставляет электроны двигаться по спиральным траекториям. Из-за большой длины свободного пробега электронов эффективность ионизации высока и позволяет поддерживать газовый разряд вплоть до давлений ультра-пысоковакуумного диапазона. Положительно заряженные ионы газа устремляются к катоду, где некоторая часть из них захватывается поверхностью. Поскольку ионы падают с энергиями до нескольких кэВ, они вызывают также и распыление материала катода. Распыляемый металл распространяется внутри ячейки и конденсируется на всех ее поверхностях, включая катоды. Таким образом откачка идет одновременно как за счет химического захвата молекул остаточных газов, так и за счет процессов, обусловленных наличием электрических полей. При этом хемисорбционнын захват имеет место преимущественно на внутренних поверхностях цилиндрического анода, а электронная откачка в основном происходит на катодах Используя для исследования радиоактивный криптон, Лаферти и Вандерслайс [147] показали, что геттерирование ионов происходит главным образом на периферии катода, расположенной против анодных стенок, тогда как середина катода служит источником распыляемого металла. Такая неравномерность существенна для функционирования ионного распылительного насоса, поскольку при однородном распределении ионного тока процесс непрерывного замуровывания частиц инертного газа был бы невозможен. Производительность простой разрядной ячейки Пен нинга слишком мала для откачки реальных вакуумных систем. Сущест венным шагом вперед явился ионно-распылительный насос Холла, имеющий значительно большую быстроту откачки [148]. Это достигается использованием многоячеечного анода, расположенного между двумя катодными платами (рис. 31). Эффективность многоячеечной структуры обусловлена тем фактом, что максимальный заряд, заключенный в полом [c.215]


    Идентификация вакуумных течей. Задача идентификации небольших течей в вакуумной камере усложняется обычно наличием так называемых виртуальных течей, также дающих вклад в атмосферу остаточных газов. Эти течи обусловлены небольшими объемами газа, захваченного в карманы внутри самой системы и медленно выделяющегося из них при снижении давления в камере. Источниками виртуальных течей могут быть глухие резьбовые отверстия с винтами, из которых газ просачивается в вакуум, некачественно выполненные спаи или уплотнения с двойными прокладками, а также другие детали элементов, изолирующие некоторый объем газа, связанный с высоким вакуумом через очень узкие отверстия. Ответственными за аномально высокое давление остаточных газов могут стать также и материалы, обладающие большой адсорбционной емкостью, например, смазка, активно сорбирующая газы, или пористые материалы, равно как и некоторые сорта керамики или дерево, случайно оставленное в системе. Подобно виртуальной течи могут действовать также вымораживающие ловушки, поскольку давление паров таких конденсаторов, как вода или Oj при обычных температурах вымораживания в условиях высокого вакуума становится уже существенным [227, 228]. Поиск действительной течи при наличии в системе виртуальных источников может оказаться очень продолжительным и безуспешным. Таким образом, первоочередной задачей поиска является обнаружение именно виртуальных течей. К сожалению, проблема разделения течей является очень трудной. Для выделения вкладов конденсируемых и обычных газов иногда полезно внимательно просле- [c.311]

    Ионизационные манометры сами действуют как насосы или источники остаточных газов. Их откачивающее действие обусловлено электрическим механизмом откачки, обсуждавшимся в разд. 2Д, 2). Эффект значительно сильнее для манометров с ненакаливаемымн катодами. Обезгаживанте электродов лампы производится обычно при включении манометра. Кроме катода, пропусканием сквозного тока в течение нескольких минут прогревается и сетка. Мощность, выделяемая при этой операции, достаточно высока для нагрева и частичного обезгаживания колбы лампы. Однако этот прогрев не снижает скорости газовыделения настолько, чтобы манометром можно было бы пользоваться в сверхвысоком вакууме. Выделение газа в чистой, но непрогретой соединительной трубке манометра может по.ме-шать измерению вакуума выше 10 мм рт. ст. [360]. Такие же трудности возникают, если на соединительную трубку датчика попадают пары масла из насоса (361]. Для сведения разницы в давлениях внутри лампы и в вакуумной системе к минимуму нужно использовать соединительные трубки с высокой пропускной способностью [362]. Для давлений вплоть до 10 мм рт. ст. адекватным считается параметр в 20 мм, тогда как для более глубокого вакуума рекомендуются трубки = 25 мм. [c.331]

    По поводу предельного давления необходимо отметить еще следующее. Мы знаем (см. 1-4, табл. 1-2), что рабочие жидкости насосов являются источниками паров, поступающих из насоса в вакуумную систему очевидно, что в связи с этим равновесное давление в вакуумной системе является суммой парциальных давлений не только остаточных газов, но и паров рабочей жидкости однако вв йду того, что рабочие жидкости могут быть различного качества, не связанного непооредственно с качеством самого насоса, предельный вакуум как параметр для всех насосов, кроме масляных пароструйных, оценивается только по парциальному давлению остаточных газов без учета давленФгя паров рабочих жидкостей. [c.60]

    Как правило, масс-спектрометр работает при непрерывной откачке и постоянном натекании газа в прибор. В качестве примера рассмотрим вакуумную систему масс-спектрометра МХ-1303 (рис. 11). Высокий вакуум создается диффузионными парортутными насосами типа ДРН-10 производительностью 7—10 л1сек. Остаточное давление, достигаемое этими насосами при использовании ловушек с жидким азотом, составляет около 2-10 мм рт. ст. Один диффузионный насос используется для откачки источника ионов и прилегающей к нему части камеры анализатора. Остальная часть камеры анализатора и приемник ионов откачиваются другим диффузионным насосом. Дифференциальная система откачки позволяет значительно повысить давление анализируемого газа в источнике ионов, не повышая давления в камере анализатора, что увеличивает чувствительность масс-спектрометра без ухудигения его разрешающей способности. [c.35]


Смотреть страницы где упоминается термин Остаточных газов вакуумных систем источники: [c.778]    [c.150]   
Технология тонких пленок Часть 1 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Остаточных газов

Остаточных газов вакуумных систем

Ток остаточный



© 2025 chem21.info Реклама на сайте