Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кипение различном качестве поверхности

    Один из путей экономии энергии-полное сжигание топлива с максимальным использованием его теплотворной способности. Горение происходит на границе раздела частица топлива-воздух, а для жидкого топлива, например мазута-на границе капля-воздух. Чем больше поверхность раздела, тем полнее сгорает топливо. Поэтому перед сжиганием очень важно его диспергировать. А если горючую жидкость превратить в пену Тогда поверхность станет огромной. В качестве жидкости-мазут или керосин, а в качестве газа-метан, воздух или их смесь. Принципиально получение пены из керосина или бензина не представляет проблемы, ведь бензин-это смесь углеводородов с различными температурами кипения. О способности такой смеси вспениваться мы уже говорили. [c.212]


    Схема с одноступенчатым испарителем явно неэкономична, так как требует значительного расхода топлива на выработку дистиллята (около 1 т пара на 1 г воды). В связи с этим эффективность процесса повышают последовательным применением нескольких выпарных аппаратов (рис. 38). При такой схеме вторичный пар предыдущей ступени используют в качестве греющего пара для испарения воды в последующей системе. Исходная соленая вода поступает в концевой конденсатор, где нагревается теплом вторичных паров из последней системы испарителя. Затем ее подают в испаритель первой ступени, где нагревают до температуры кипения паром от ТЭЦ, после чего многократно испаряют в камерах под вакуумом. Вторичный пар конденсируется на трубках теплообменников и отводится в виде дистиллята в бак пресной воды. Не испарившуюся в первом корпусе воду направляют последовательно во все корпуса установки, где частично испаряют за счет снижения давления и, следовательно, температуры кипения. Для получения 1 г дистиллята на двухкорпусной установке требуется затратить 0,7 г греющего пара, на четырехкорпусной — 0,4 г. Однако с увеличением числа ступеней испарения уменьшается температурный перепад по ступеням, увеличивается суммарная поверхность нагрева аппаратов и соответственно возрастают капитальные затраты. Оптимальное число ступеней испарения, так же как и другие параметры установки, находят путем сопоставления технико-экономических показателей различных вариантов. [c.160]

    Поскольку коэффициент теплоотдачи зависит от множества факторов очень полезно для ориентировки знать его значения для некоторых типичных условий. В качестве отправной точки на рис. 5.8 показано влияние давления, теплового потока и скорости на входе на коэффициент теплоотдачи для течения воды в одноходовом пучке труб круглого сечения. Очевидно, что кривые на рис. 5.8 непосредственно неприменимы для других жидкостей или других условий. Важно найти соотношение данных, применимое для определения коэффициентов теплоотдачи в условиях пузырчатого кипения при вынужденной конвекции. Для получения исходных уравнений при выводе соотношения данных для различных жидкостей и различных рабочих условий было проведено аналитическое исследование факторов, оказывающих влияние на скорость, с которой паровые пузыри удаляются от поверхности нагрева в условиях пузырчатого кипения при вынужденной конвекции. Было получено несколько исходных уравнений. Из них авторы предпочитают уравнение Леви [c.95]


    В газожидкостной хроматографии применяются два типа колонок — наполненные и капиллярные. Наполненные колонки по конструкции такие же, как и в газоадсорбционной хроматографии. Для заполнения колонок применяют нелетучие жидкости (неподвижная фаза), нанесенные в виде тонкого слоя на поверхность инертного носителя. В качестве носителей используют огнеупорный кирпич, кизельгур, трепел, диатомиты, размолотые до размера частиц 0,1—0,2 мм, в качестве неподвижной фазы — разнообразные масла вазелиновое, растительное, силиконовые — синтетические полимерные и т. п. Подбирая подходящую неподвижную фазу, обладающую различной растворяющей способностью по отношению к компонентам анализируемой смеси, и изменяя температуру колонки, удается получить четкую хроматограмму, на которой каждый пик соответствует одному компоненту, практически для любой смеси веществ. Анализ, как правило, проводят при температуре, близкой к темпе ратуре кипения смеси, однако возможно проведение анализа и при температурах на 200—300° ниже темпе  [c.127]

    Фракционной, или дробной называют такую пере-щнку, когда из смеси жидкостей с различными темпе-ратурами кипения выделяют отдельные компоненты. Дробную перегонку ведут обязательно с-применением дефлегматоров или колонок полной конденсации. Дефлегматоры (рис. 125) бывают различной формы. Они приедназначены для того, чтобы увеличить поверхность охлаждения паров испаряющейся жидкости, что да т возможность перегонять жидкости в сравнителыш узких границах температур. В качестве дефлегматоров могут быть использованы трубки с расширением, заполненным стеклянными кольцами, шариками и т. и. [c.162]

    В сэндвич-камере величины К должны быть постоянными независимо от длины пути разделения, что было подтверждено в случае бензола и нропанола-1. Сильное возрастание величины К в случае применения ацетона для значений 2/, не превышающих 100 мм, предполагает предварительное насыщение сорбента из газовой фазы благодаря высокому давлению паров ацетона. Это происходит даже в сэндвич-камере с расстоянием между поверхностью сорбента и крышкой 1 мм. Уменьшение К для гексана при 2/ >70 мм и для четыреххлористого углерода при 2 > 60 мм можно объяснить только эффектами испарения. Степень предварительного заполнения пор сорбента из газовой фазы в зависимости от 2/ можно рассчитать по величине К, которая различна для К-камеры и 1-миллиметровой сэндвич-камеры. Соответствующие данные приведены в нижней правой части рис. 6.7. Было показано, что, например, в К-камере с насыщенной атмосферой при использовании бензола с 100 мм поры слоя сорбента заполнены растворителем в среднем более чем на 30%. На основании полученных данных пришли к выводу, что при выборе растворителя или системы растворителей в качестве элюента (табл. 6.9) необходимо учитывать такие характеристики, как удельная масса, температура кипения, давление паров и теплота испарения. Такой подход тем более важен в случае использования смесей растворителей. В соответствии с нашими собственными исследованиями поверхностное натяжение растворителей пе играет сколько-нибудь заметной роли в хроматографическом разделении. В присутствии сорбента величина 7, очевидно, изменяется в значительной степени. Однако вязкость растворителя является очень важным фактором, влияющим на величину К и, следовательно, на I. Уменьшение вязкости при повышении температуры оказывает положительное влияние на величину К. Параметры, харак- [c.131]

    В отличие от гидрознна, гипофосфит натрия обладает важным преимуществом, так как в осадке содержится в 8—10 раз меньше газов. Добавка тиосульфата натрия способствует снижению пористости никеля. Так, при толщине 20 мкм она снижается от 10 до 2 пор/см . При выборе материала для ванны следует учитывать, что pao творы испаряются при температуре, приблизительно равной температуре кипения, и имеют высокую чувствительность к различным загрязнениям. Кроме того, материал должен быть стойким к HNO3, так как периодически со стенок ванны приходится удалять осадки никеля. Ванны объемом 20 л изготовляют из пирекса, а большего — из полированной керамика Внутреннюю поверхность стальных емкостей покрывают стекловидной эмалью. Ванны из коррозионно-стойкой стали необходимо пассивировать концентрированной азотной кнслотой в течение нескольких часов. Для предотвращения возникновения гальванопар между стальной ванной и покрываемыми деталями ее стенки необходимо футеровать стеклом и резиной. В качестве футеровки в ваннах малой емкости используют полиэтиленовые вкладыши. [c.72]

    Выделение ароматических полиамидов из раствора перед переработкой обычно проводится осаждением в различные осадители и в зависимости от назначения полимера осуществляется различными способами. Так, для получения тонкодисперсных и порошкообразных материалов рекомендуется обычно использовать довольно разбавленные растворы и смешивать их с осадителем при интенсивном перемешивании. Для получения полимера в виде гранул, наоборот, необходимы высококонцентрироваяные растворы. Выдавливанием реакционной массы в осадитель через щелевую фильеру или нанесением ее на гладкую поверхность вращающегося барабана или движущейся ленты в осадителе можно получить ленту, которая используется, например, для формования тонкослойных пластмассовых изделий. Поскольку количество осадителя может быть довольно значительным, он должен быть доступным, недорогим, малотоксичным и т. д. Наиболее широко в качестве осадителя для ароматических полиамидов применяется вода. Ее, однако, нельзя использовать при работе с растворами полимеров в растворителях, не смешивающихся с водой. Воду можно применять также в качестве осадителя полимеров, полученных в растворителях с невысокой температурой кипения, осаждая полимер в горячую воду с одновременной отгонкой растворителя. Для осаждения ароматических полиамидов из растворов в других растворителях можно использовать органические жидкости. [c.39]


    Этот же процесс осуществляется в ректификационных колонках различного устройства и протекает тем более полно, чем больще поверхность соприкосновения между стекающим конденсатом и парами. Эффективность работы колонки зависит от ее высоты, характера наполняющей на-Рис. 17. Игольча- садки, количества стекающей флегмы и качества тепловой изоляции (если тепловые потери в окружающую среду велики, то равновесие между парами и жидкостью не может установиться и разделение будет менее совершенным). С помощью хорошо действующих ректификационных колонок удается разделять жидаости, температуры кипения которых отличаются лишь на 2°. Однако такие колонки весьма сложны, и для обычных работ пользуются менее совершенными, но зато более простыми фракционировочными колонками. В частности, достаточно хорошие результаты получаются при применении колонки, наполненной короткими обрезками стеклянной трубки или стеклянными бусами (рис. 16). Разделение смеси будет тем более полным, чем выше колонка и че.м меньше скорость перегонки. [c.32]

    Теплоты адсорбции одних и тех же адсорбатов на широкопорис-тых стеклах и силикагелях близки, что указывает на близость геометрии и химической природы поверхности обоих этих адсорбентов [1621. Ждановым, Киселевым и Яшиным [162] впервые были применены широкопористые стекла в газо-адсорбционной хроматографии для разделения жидкостей с температурами кипения до 200° С. На рис. 108 показаны полученные при различных температурах хроматограммы разделения смеси ароматических углеводородов бензола, толуола, этилбензола, изопропилбен-зола и предельных нормальных углеводородов Се—Сю на колонке длиной 100 см диаметром 4 мм с применением широкопористого стекла в качестве адсорбента. Полученные пики достаточно симметричны. Хроматограммы определения двух типов смесей технического изопропилбензола приведены на рис. 109, а и б. В обоих случаях интерес представлял только ник этилбензола, после выхода которого могла проводиться обратная продувка из колонки более тяжелых компонентов. Анализ этой смеси можно проводить за 5—8 мин. Стабильность нулевой линии при этом сохраняется. [c.168]

    Облучение в реакторе. Задачи, которые приходится решать при изготовлении образцов, предназначаемых для облучения, весьма разнообразны и зависят от целей эксперимента и степени его сложности. Если необходимо просто получить радиоактивный изотоп и затем использовать его в качестве индикатора или для изучения схемы распада, приготовление мишени обычно не представляет трудностей. Однако и в этом случае при облучениях в реакторе требуется соблюдение ряда условий. Так, например, контейнеры для образцов следует подбирать с учетом мощности потока нейтронов, температуры в активной зоне й продолжительности облучения. Нужно избегать облучений в сосудах из пирекса ввиду большого содержания бора в этом материале (бор обладает очень высоким сечением захвата нейтронов). Для облучения в течение нескольких минут при умеренных потоках в исследовательских реакторах (10 —10 нейтрон1см -сек) в ряде случаев можно использовать полимерные контейнеры, преимущество которых состоит в малой активации. Образцы можно заворачивать и в алюминиевую фольгу, изготовленную из самого чистого металла. Этот метод удобен в тех случаях, когда анализ проводится после распада 2,3-минутного АР . Для более продолжительных облучений образцы часто запаивают в обезгаженные кварцевые ампулы. Эти ампулы обычно необходимо выдерживать после облучения в течение некоторого времени для уменьшения активности 81 (период полураспада 2,6 час). Необходимо также следить за тем, чтобы ампулы с облученными образцами вскрывались с помощью соответствующих приспособлений в условиях, предупреждающих излишнее облучение персонала и опасность радиоактивных загрязнений. Надо учитывать и термическую устойчивость вещества, подвергаемого облучению. Температура в активной зоне реакторов различных типов может изменяться в широких пределах. Реакторы бассейнового типа, в которых воду используют в качестве охладителя и замедлителя, обычно значительно более пригодны для облучения органических веществ, чем, например, реакторы с графитовым замедлителем. Некоторые реакторы оснащены специальными приспособлениями, в которых облучение можно проводить при охлаждении водой или даже жидким азотом. Особые трудности возникают при облучении водных растворов. Даже в том случае, когда охлаждение достаточно эффективно и раствор не нагревается выше точки кипения, появление газообразных продуктов радиолиза может привести к значительному повышению давления в ампуле, если только не предусмотрена возможность удаления этого газа путем продувания или каталитического превращения в менее летучие или исходные продукты. Еще одна трудность при облучениях в реакторе связана с изменением потока нейтронов в образце, если он обладает значительным сечением захвата. Например, слой золота толщиной 0,1 мм (эффективное сечение захвата тепловых нейтронов для золота равно почти 100 барн) уменьшает поток тепловых нейтронов примерно на 6 %, так что внутрь кубика из золота с ребром 1 см может попасть лишь малая доля нейтронов, падающих на его поверхность. [c.385]


Смотреть страницы где упоминается термин Кипение различном качестве поверхности: [c.35]   
Теплопередача (1961) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте