Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфат-ион хроматографическое отделение

    Для быстрого хроматографического отделения микроколичеств индия от сравнительно больших количеств галлия была использована система 2М НВг — три-(2-этилгексил) фосфат. Авторам [24] удалось из 2 г чистого галлия выделить и сконцентрировать [c.422]

    Практически хроматография применяется в качественном анализе для удаления фосфат-иона при анализе первых трех аналитических групп для отделения всех катионов, за исключением плохо адсорбируемых катионов первой группы, что требуется при анализе анионов. Наиболее перспективной для аналитической практики является возможность выделения некоторых катионов из смеси путем перевода их в анионную форму на основании амфотерности или комплексообразования этих катионов. На подобном принципе основано хроматографическое отделение Ре от и Ът , предложенное Ю. Ю. Лурье и Н. А. Филипповой. [c.315]


    Кроме хроматографического разделения ионов одного и того же знака заряда методом ионного обмена в динамических условиях можно отделять ионы одного знака от ионов другого знака. Примером такого разделения является отделение на катионите катионов железа(1И), алюминия(П1), кальция (И) и магния (И), мешающих определению фосфат-ионов при анализе природных фосфатов. [c.322]

    Простейшим случаем хроматографического разделения является отделение катиона от аниона. Если целью отделения служит очистка одних ионов от других, то раствор ионов пропускают через ионно-обменную смолу, адсорбирующую ионны, подлежащие удалению из раствора. Примером такого использования хроматографического метода отделения может служить очистка многовалентных катионов, например, трехвалентного железа от фосфат-иона. [c.317]

    Для отделения фторида используют и другие хроматографические методы. Было найдено [54], что методом бумажной хроматографии можно легко и количественно разделить фториды и фосфаты. С помощью тонкослойной хроматографии на целлюлозе 62] или силикагеле [63] можно отделить галогенид-ионы (включая фториды). В бумажной и тонкослойной хроматографии галогенидов, как правило, значение Я/ увеличивается с увеличением атомной массы. В случае ионообменных материалов последовательность сорбции хлоридов, бромидов и иодидов обычно обратная. [c.340]

    Описан хроматографический метод отделения сульфатов от других ионов в колонке (рис. 62), заполненной оксидом алюминия [36]. Метод позволяет выделить до 0,5 ррт сульфатов из растворов, содержащих значительные концентрации хлоридов, нитратов, перхлоратов и большинства ионов металлов. Сульфат элюируют из колонки разбавленным раствором аммиака, пропущенным предварительно через катионообменную колонку, и затем титруют его раствором соли бария. Описываемый метод не позволяет отделить сульфаты от фторидов и фосфатов. Мешающее действие фторида устраняют добавлением борной кислоты к анализируемому раствору [40[. Удаление фосфата описано выше. [c.527]

    Поскольку речь идет о хроматографическом разделении природных смесей редкоземельных элементов, в первую очередь возникает вопрос об извлечении их суммы из минералов. В зависимости от химического состава минералов последние или разлагают серной кислотой (фосфаты, карбонаты), или сплавляют со щелочью (титано- и танталониобаты) редкоземельные элементы выщелачивают затем водой (в случае сульфатов — холодной) и из раствора путем повторных осаждений щавелевой кислотой и аммиаком выделяют сумму редкоземельных элементов, более или менее свободную от посторонних примесей. В дальнейшем можно всю выделенную сумму непосредственно использовать для хроматографического разделения при этом осадок гидроокисей или окисей, полученных после прокаливания оксалатов, растворяют в азотной или соляной кислоте, упаривают раствор досуха для удаления избытка кислоты и полученный раствор вносят в колонку сорбента. С другой стороны, в ряде случаев (например, при крупногабаритном производстве чистых препаратов индивидуальных элементов, концентратов и технических смесей) целесообразнее сочетать известные химические методы переработки (деление суммы редкоземельных элементов на цериевую и иттриевую подгруппы, а также отделение церия, самария, европия и иттербия на основе их аномальной валентности) с хро- [c.168]


    Для хроматографического отделения хрома от других элементов применяют различные сорта бумаги Ватман № 1 [615, 730, 733, 746, 921, 982, 984, 985, 1048, 1086], Ватман № 2 [879-882], Ватман № 3 [290, 312, 1019] и Ватман № 4 [641], Шлейхер и Шюль № 2040 [641] и № 2043 [615, 746, 1087], Нидершлаг WF-14 [487], бумага марки FN-3 [230], бумага, выпускаемая Ленинградской фабрикой им. Володарского марка Б ( быстрая ) [290], марка С ( средняя ) [169], марка М ( медленная ) [230]. Кроме того, используют бумагу на основе диэтиламиноэтилцеллюлозы [1043], бумагу, импрегни-рованную фосфатами циркония [744, 1020] и олова [166], арсена-тами олова и титана [987], ферроцианидом олова [988]. Описаны методы разделения смесей элементов на бумаге, пропитанной катионитом Sel-K5 (дифенилкарбазидной смолой) [1078]. [c.145]

    Мышьяк (П1) эффективно поглощается сильноосновным анионитом из концентрированной соляной кислоты [45 ] и поэтому может быть легко отделен от мышьяка (V) и от фосфора (V). Это разделение, как и отделение Аз (V) от Ое (IV), было исследовано Иошино [67]. Мышьяк (III) не поглощается анионитом из разбавленной плавиковой кислоты, тогда как германий и галлий удерживаются ионитом. На этом принципе основан метод выделения радиоактивного мышьяка без носителя [53]. Мышьяковистая кислота гораздо более слабая кислота, чем мышьяковая, благодаря чему они могут быть разделены с помощью слабоосновного анионита. Ионит поглощает только мышьяковую кислоту [3 ]. О хроматографическом отделении мышьяка (III + V) от фосфатов с применением сильноосновного анионпта сообщают Бруно и Беллуко [5]. Мышьяк элюируется 0,001Ж НС1, после чего раствором хлорида натрия элюируется фосфат-ион. [c.395]

    Важным примером использования в количественном анализе катионного обмена является отделение анионов 501 от различных катионов. Так хроматографический метод определения серы в пиритах основан на поглощении трехвалентного железа катионитом. Выходящую из колонки серную кислоту можно легко определить обычным весовым способом в виде сульфата бария. Аналогично можно определить фосфаты в ( юсфоритах, поглощая кальций, магний, железо и алюминий катиони- [c.145]

    Хроматографические методы позволяют сравнительно легко отделять калий от анионов, мешающих его определению хпми-чрскнми методами Для отделения калия от сульфатов и фосфатов пропускают исследуемый раствор через колонку с анионитом в хлоридной форме При этом сульфат- и фосфат-ионы количественно обмениваются на ионы хлора, в фильтрате содержится калий в виде хлорида После промывания колонки водой в полученном растворе определяют содержание калия гравиметрическим способом в виде перхлората [1285]. Исследуемый раствор пропускают через колонку с катионнтом в Н-форме, калий (и натрий) полностью задерживается, а мешающие анализу анионы проходят в фильтрат в виде соответствующих кислот Колонку промывают затем водой, фильтрат и промывные воды отбрасывают Калий (и натрий) вытесняют из колонки промыванием соляной кислотой. В фильтрате содержится теперь калий (и натрий) в виде хлорида [2410]. Для отделения калия (и натрия) от анионов-окислителей нельзя пользо- [c.143]

    Изучено адсорбционно-хроматографическое разделение дитизонатов С(1 и 2п, С(1 и РЬ, С(1 и В1 с использованием в качестве сорбентов КНСО3 и трехзамещенного цитрата калия [57]. Разработан метод отделения кадмия от мешающих элементов с помощью минерального ионообменника — фосфата кальция [221]. [c.157]

    При разработке новых методов ионообменного разделения аналитик должен выяснить, какие иониты наиболее пригодны для его целей. Некоторые задачи аналитического разделения могут быть решены с помощью как катионитов, так и анионнтов нередко вопрос о иредиочтении того или иного материала является чисто вкусовым. Простым примером может служить отделение щелочных металлов от фосфат-иона. Следует отметить, что даже хроматографическое разделение ионов одного знака часто может быть выполнено с помощью ионитов обоих типов. Например, для разделения некоторых металлов могут с успехом применяться катиониты однако применение для этой же цели анионитов, основанное на разделении комплексов этих металлов, часто бывает проще и быстрее. В этой главе мы не будем, однако, углубляться в рассмотрение подобных вопросов разнообразные примеры такого тина будут разобраны главах 10, 11 и 15. Цель настоящей главы — дать информадшо о свойствах ионитов наиболее важных типов для облегчения выбора подходящего ионита. [c.143]

    Получение актиния. Природным источником получения обычно применяемого изотопа актиния Ас являются урановые руды, при обработке которых актиний осаждается в фракции редкоземельных элементов. Отделение его от редкоземельных элементов является нелегкой задачей. Вследствие чрезвычайно малой концентрации актиния всегда требуется предварительное обогащение этой фракции, обычно путем дробной кристаллизации магнийнитратного комплекса, аммонийнитратного комплекса или путем дробного осаждения оксалатов, фосфатов или гидроокисей редкоземельных элементов. Из обогащенного препарата актиний выделяют хроматографическим и экстракционным методами. [c.495]


    Газовую хроматографию используют также для отделения фосфата. Аммонийные соли фосфата, ванадата, арсената, оксалата и т. д. реагируют с бис(триметилсилил)три-фторацетамидом с образованием соединений, которые можно разделить на газожидкостной хроматографической колонке. Используют пламенно-ионизационный детектор, в случае фосфата образуется соединение (ТМ5)зР04 [45]. [c.440]

    В качестве металлиндикатора на ион бария при фотометрическом определении сульфат-ионов использован реагент ортаниловый Б. Метод предусматривает предварительное отделение прочих элементов хроматографическим методом и последующее определение 5—20 мкг SO4" в объеме 25 мл в среде 80 Jo-ного этанола при pH 6. Определению су.т1ьфат-ионов не мешают уротропин (в соотношении 1 30), фосфаты (в соотношении 1 2), фториды (1 1,5), ацетаты (1 0,2). Относительная ошибка определения сульфат-ионов составляет 6%. [c.137]

    Объединенные фильтраты от оксалатов нейтрализуют аммиаком, вводя его в очень небольшом избытке затем добавляют 1 г таннина, растворенного в небольшом объеме воды, который осаждает в виде оксалатов, фосфатов или танниновых комплексов все присутствующие основания. Осадок смешивают с небольшим количеством бумажной массы, фильтруют под небольшим вакуумом, промывают горячим 2%-ным раствором азотнокислого аммония и прокаливают в платиновом тигле. Остаток сплавляют с 2—3 г соды, сплав извлекают горячей водой, нерастворимые вещества от( )ильтровывают, промывают 2%-ным раствором соды до удаления фосфата, возвращают обратно в стакан и напревают с концентрированной соляной кислотой. После разбавления и добавления бумажной массы и хлористого аммония железо, титан, уран и цирконий дважды выделяют двукратным осаждением аммиаком, не содержащим карбонатов в фильтрате определяют кальций. Осадок гидроокисей прокаливают и снова сплавляют с содой для отделения последних следов фосфорной кислоты нерастворимый остаток употребляют для определений железа, урана, титана и циркония обычными методами. Два содовых фильтрата содержат алюминий его выделяют и взвешивают в виде AIPO4. Содержание урана в монаците обычно очень мало и его лучше определять хроматографически из отдельной навески, как описано в гл. XXI, разд. IX. [c.150]


Смотреть страницы где упоминается термин Фосфат-ион хроматографическое отделение: [c.58]    [c.417]    [c.79]    [c.175]    [c.52]    [c.164]    [c.85]    [c.316]   
Курс аналитической химии (1964) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфат-ион отделение



© 2025 chem21.info Реклама на сайте