Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяка сплавы растворение в серной кислоте

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]


    Измененный метод А. И. Low для сернистых руд, низкосортных окислов и т. д. Навеску в 0,5—1 г измельченной в тонкий порошок руды смешивают в колбе Кьельдаля с 5—7 г сернокислого калия и 10 мл серной кислоты (плотн. 1,84), добавляют для восстановления 0,5 г винной кислоты или кусочек фильтровальной бумаги и нагревают сначала слабо, затем постепенно усиливают нагревание, а под конец нагревают на полном пламени горелки Бунзена до тех пор, пока углерод не окислится и большая часть свободной кислоты не удалится. По охлаждении обрабатывают 50 мл соляной кислоты (1 1), слабо нагревая до растворения, и после прибавления 25 мл соляной кислоты (плотн. 1,19) осаждают мышьяк сероводородом. Фильтруют с платиновым конусом через смоченный соляной кислотой (2 1) двойной фильтр и промывают той же кислотой (2 1). Фильтрат разбавляют двойным количеством теплой воды, сурьму осаждают сероводородом, фильтруют и промывают сероводородной водой. Для отделения от РЬ, Си и т. д. осадок обрабатывают 5—10 мл раствора сернистого натрия (60 г Na.jS и 40 г J aOH в литре) раствор тиосоли обрабатывают приблизительно 2 г сернокислого калия и 10 мл серной кислоты (плотн. 1,84), как указано выше, сплав растворяют в соляной кислоте и титруют сурьму. [c.385]

    Точно так же, как и мышьяк, определяют сурьму в ее сплавах и в соединениях сурьмы (П1), При растворении сплавов совершенно необходимо применять химические реагенты, не способные окислять сурьму, во избежание получения уменьшенных результатов определения. К потерям часто ведет также длительное нагревание и кипячение при растворении сплава в соляной кислоте, так как хлористые соединения сурьмы летучи. Этим методом обычно определяют сурьму в баббитах, растворяя навеску сплава в концентрированной серной кислоте. [c.165]

    Серная кислота широко используется для перевода в растворимое состояние сурьмы [5.1094], сплавов мышьяка, сурьмы, олова и свинца, а также различных металлургических продуктов [5.1095—5.1098]. При этом в раствор переходят A.s , Sb и Sn ", а свинец осаждается в виде сульфата. Для растворения [c.209]

    Следует иметь в виду, что при растворении сплавов в соляной или серной кислоте могут быть потеряны находящиеся в сплавах в небольших количествах мышьяк, фосфор, сера и кремний. Эти элементы дают с металлалш соединения, которые при обработке их кислотой разлагаются с образованием газообразных продуктов АзНз, 81Н4, РНз и НгЗ. [c.128]


    Ход анализа. Навеску сплава 1 г при содержании мышьяка 0,1% или 0,1 г при его содержании больше 0,1% растворяют в 10 мл азотной кислоты (пл. 1,33). Если сплав содержит олово, то навеску пробы растворяют в смеси 10 мл азотной кислоты (пл. 1,33), 10 мя 4%-ной борной кислоты, 1,5 мл фтористоводородной кислоты, разбавленной (1 1) и 5 мл раствора сульфата железа (111). В том и другом случае раствор после полного растворения пробы разбавляют водой до - 200 мл и выделяют медь электролитически, с вращающимся анодом при силе тока 5 А. Затем электроды обмывают вод-ой. Если в пробе присутствует свинец, то он выделяется на аноде. Этот осадок растворяют в растворе, из которого проводили выделение меди, и разбавляют раствор до 250 или 500 мл. К аликвотной части раствора, содержащей до 100 мкг мышьяка, прибавляют 2 мл серной кислоты, разбавленной (1 1), и выпаривают до появления ее паров. Остаток растворяют при нагревании в 10 мл хлористоводородной кислоты, разбавленной (1 1), охлаждают, вводят 2 мл 35%-ного раствора хлорида титана (III) и 2 мл раствора иодида калия, раствор перемешивают и выдерживают в течение 5—10 мин. Затем его переводят в делительную воронку, обмывая стакан 35 мл концентрированной хлористоводородной кислоты, и дважды экстрагируют иодид мышьяка хлороформом. Первый раз берут 25 мл, а второй раз — 10 мл хлороформа. Объединенные экстракты помещают в делительную воронку и реэкстрагируют мышьяк 15 мл воды. Далее ведут определение, как указано в разделах IV. 3.1 или IV. 3.2. [c.150]

    Для изготовления кабельных защитных оболочек применяется в первую очередь свинец. В природе свинец встречается в виде сложных сернистых и окисленных руд, содержащих наряду с ним ряд других металлов цинк, серебро, мышьяк, олово, медь, сурьму и висмут. В сухом воздухе и в воде, не содержащей воздуха, свинец хорошо сохраняется. Разбавленная серная и соляная кислоты действуют на свинец весьма слабо, так как образуемые из РЬ304 и РЬС1г пленки предохраняют металл от дальнейшего растворения. Свинец, легированный медью (0,2—0,5%) или теллуром (0,07—0,1%), более стоек к воздействию кислот, чем чистый металл. Свинец устойчив к действию аммиака и аммиачных солей, хлорсодержащих растворов, нагретых масел и спиртов. В отличие от других металлов, он не реагирует химически ни в жидком, ни в твердом состоянии с водородом, не растворяет такие газы, как кислород, азот, углекислый газ. Все это делает возможным использование свинца в качестве защитных покрытий. Но он обладает двумя недостатками ползучестью и плохой вибростойкостью. У свинца и частично у его сплавов это выражается в медленной и непрерывной пластической деформации при постоянной нагрузке (особенно при повышенной температуре) при напряжениях ниже предела упругости для данного материала. Эго явление называется ползучестью. Чистый свинец не вибростюек. Повышение вибростойкости свинцовых оболочек кабелей достигается путем легирования свинца другими металлами, а это очень удорожает его стоимость. В качестве легирующих материалов применяются олово, сурьма, кадмий, теллур и др. [c.62]

    При анализе природных соединений, сплавов и чистых металлов рекомендуется ряд методов переведения объекта в растворимое состояние. Почти все руды, содержащие никель, растворимы в смеси НС1 и HNO3 в отдельных случаях для руд, содержащих мышьяк, сурьму и серу, в качестве растворителя используется концентрированная серная кислота. Иногда при обработке кислотами не достигается полного растворения, тогда остаток сплавляют с карбонатом натрия. Силикатные породы также рекомендуется сплавлять с карбонатом натрия. [c.46]

    Мешающие ионы. Анализируемый раствор не должен быть слишком кислым. Мышьяк (V) образует с применяемым реактивом аналогичный осадок. Если мышьяка (V) не слишком много и если осаждение проводят на холоду, то он не мешает. Кремнекислоту надо удалить предварительно оставшиеся малые ее количества не мешают. Вольфрам надо предварительно отделить, так как он образует осадок фосфоровольфрамата. Хлорид- и сульфат-ионы замедляют осаждение при высоком их содержании приходится вводить большой избыток реактива. Если не требуется очень большая точность, осаждение фосфоромолибдата можно проводить в 3 н. соляной кислоте или 1 н. серной кислоте. Перхлорат-ионы не мешают. Ионы калия могут войти в состав осадка вместо ионов аммония. Фторид-ионы образуют комплексные ионы с молибденом и потому мешают. Их надо отделить перед осаждением или (если их мало) связать в комплекс добавлением борной кислоты. Ванадий (V), образующий фосфорованадомолибдат, надо предварительно восстановить до ванадия (IV) прибавлением солянокислого гидразина. Ванадий (IV) не мешает, если осаждение проводят на холоду. Висмут, ниобий, тантал, титан и цирконий образуют малорастворимые в сильных кислотах фосфаты, которые осаждаются в небольших количествах вместе с фосфоромолибда-том. Однако при растворении полученного осадка в растворе едкого натра или аммиака указанные фосфаты остаются нерастворенными. При проведении точных анализов такой остаток надо сплавить с карбонатом натрия, плав обработать водой, [c.1083]



Смотреть страницы где упоминается термин Мышьяка сплавы растворение в серной кислоте: [c.139]    [c.316]    [c.209]   
Методы разложения в аналитической химии (1984) -- [ c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы серной



© 2025 chem21.info Реклама на сайте