Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий определение в бериллия, мышьяка

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Метод пригоден для количественного определения тория в присутствии других р.з.э. [53, 54, 57, 60, 355, 413, 569], а также щелочных металлов, бора, бериллия и мышьяка [1135. При определении малых количеств тория в присутствии больших количеств урана получаются заниженные результаты. Цирконий должен быть предварительно отделен, в противном случае полнота осаждения тория не достигается [876, 1096] титан, по-видимому, не мешает [876]. [c.32]

    Не мешают определению, даже когда присутствуют в количестве, в 100 раз превышающем содержание кобальта алюминий, сурьма (III), мышьяк (И1), мышьяк (V), бериллий, висмут, кадмий, марганец, фосфор (V), свинец, торий, титан, цинк и цирконий. [c.839]

    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    Суммируя, следует сказать, что определение 13 компонентов, перечисленных в начале главы, нужно считать минимумом при всех случаях анализа горных пород. Углекислоту, окиси бария и стронция и серу тоже следует определять в большинстве случаев не меньшее значение имеет фтор. Испытанием на литий с карманным спектроскопом не следует пренебрегать даже и в том случае, когда определяются только другие 13 компонентов. Определение хлора не надо пропускать, когда имеют дело с щелочными вулканическими породами или если в округе известны случаи скаполитизации. Следующими по значению идут цирконий, никель, хром, ванадий и медь, определение которых желательно в тех случаях, когда возникают вопросы петрогенезиса. Растворимый в кислоте сульфат (50з) обыкновенно не имеет особого значения. Другие компоненты, как литий (весовое определение), бор, бериллий, редкие земли, молибден и мышьяк, определяются только в особых случаях. В присутствии заметного количества бария хорошо убедиться в том, сколько серы связано с ним в барит (стр. ИЗ). [c.41]

    В результате всех этих исследований разработаны методы определения в среднем 6—8 элементов-примесей в чистых веществах, используемых в реакторной и полупроводниковой технике (графит, уран, свинец, висмут, цирконий, бериллий, кремний, германий, галлий, мышьяк, арсенид галлия, индий, таллий, фосфор, сурьма, цинк и др.), а также в других чистых материалах (бор, молибден, ниобий, иттрий, европий, кадмий). Созданы методы активационного определения целого ряда примесей в 22 веществах высокой чистоты с чувствительностью 10 —10 °%. [c.5]


    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Определенная роль надкритическим флюидам отводится и в процессе грейзенизации — сложном постмагматическом процессе высокотемпературного (500—300° С) преобразования пород под влиянием остаточных кислых растворов, богатых летучими компонентами и кремнеземом. Источником растворов являются гранитные магмы. Изменение пород начинается с выщелачивания породообразующих минералов с последующим замещением их кварцем, мусковитом, серицитом, топазом, турмалином, флюоритом и другилш минералами. Таким образом, грейзены представляют собой метасоматические породы в основном слюдяно-кварцевого состава, часто с топазом, флюоритом, турмалином, полевым шпатом. Грейзенизации сопровождается образованием руд вольфрама, олова, бериллия, молибдена мышьяка, висмута, циркония, тантала, никеля, редкоземельных и других элементов. Рудами становятся сами грейзены и сопровождающие их кварцевые, топазокварцевые, турмалии-кварцевые жилы, прожилки, образовавшиеся нри 400—20Э° С. Грейзенизации занимает промежуточное положение между пегматитовым процессом и собственно гидротермальным. [c.91]

    Медь, цинк, кадмий, кобальт, никель, лантан, уран, марганец, (И) также образуют с сульфарсазеном окрашенные соединения. Не образуют последних и не мешают определению свинца литий, калий, натрий, рубидий, цезий, магний, барий, стронций, кальций мышьяк, висмут, вольфрам, толлий (HI), германий, галлий в количествах до 50у. Железо (III), алюминий, титан,бериллий, олово (IV), теллур, иттрий, скандий, цирконий, ванадий (V), молибден (VI), торий в количествах 50у мешают определению свинца. [c.210]

    Изучено влияние посторонних ионов на скорость катали тической реакции. Определению 0,01 мкг марганца не меша ют 5 мКг кальция, бериллия, ртути (И), алюминия, меди золота (П1), титана (IV), германия, ниобия, мышьяка (V) ванадия (V), хрома (III, VI), селена (VI), молибдена (VI) вольфрама (VI), рения (VII), железа (III), палладия (II) а также 0,05 М растворы солей серной, азотной, соляной, пла виковой и винной кислот. Уменьшают скорость реакции на 20—30% 5 мкг лантана, цинка, тория, свинца (II), сурьмы (V), висмута (III), кобальта, никеля. Снижают скорость реакции Б 2—3 раза 5 мкг серебра, магния, циркония, платины (IV). Останавливают реакцию комплексон III, цитраты, фосфаты, триэтилентетраамин. В присутствии пиридина скорость реакции увеличивается и составляет при концентрациях пиридина 0,02 0,1 0,4 М соответственно 0,014 0,017 0,021 мин-  [c.98]


    Осаждение аммиаком—одна из самых обычных операций, применяемых в анализе. Опа проводится либо для определения осажденного соединения весовым путем, либо для совместного отделения двух или нескольких металлов от других металлов. Если эта операция выполняется для количественного весового определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов грунны сероводорода некоторые из этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю кремнекислоту обычным методом невозможно, оставшееся небольшое количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 874). Число металлов, осаждаемых аммиаком, очень велико. Сюда входят алюминий, железо (П1), хром, таллий, галлий, индий, редкоземельные металлы, уран, титан, цирконий, бериллий, ниобии и тантал (стр. 104). К ним надо прибавить пятивалентные фосфор, мышьяк и ванадий, которые осаждаются в виде фосфатов, арсенатов и ванадатов одного или нескольких из перечисленных металлов. При большом содержании этих трех элеме] Тов осаждение их не будет полным фосфор и мышьяк в большем или меньшем количестве осаждаются в виде фосфатов и арсенатов щелочноземельных металлов и магния, если последние присутствуют . Поэтому в таких случаях осанедение аммиаком недопустимо. Неудовлетворительные результаты получаются также, когда раствор содержит большое количество цинка, особенно в присутствии хрома плохо удается разделение и в присутствии кобальта или меди. Бор мешает осаждению, и поэтому должен быть предварительно удален методом, описанным на стр. 763. [c.95]


Смотреть страницы где упоминается термин Цирконий определение в бериллия, мышьяка: [c.204]    [c.738]    [c.90]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.335 , c.337 , c.417 , c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Бериллий определение

Бериллий определение циркония



© 2024 chem21.info Реклама на сайте