Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород, атомный радиус определение

    Менее определенным является понятие атомных радиусов для неметаллов. Обычно за них принимают ковалентные радиусы, полученные из межатомных расстояний в двухатомных газообразных молекулах (водород, азот, кислород, хлор) или кристаллах (бор, углерод, кремний, фосфор и т. д.) соответствующих простых веществ (табл. 6). Тенденции изменения ковалентных радиусов совпадают с тенденциями изменения металлических радиусов s- и р-элементов неравномерное уменьшение при движении по периоду слева направо и увеличение при движении по группе сверху вниз. [c.120]


    Растворимость кислорода быстро падает при изменении атомных расстояний в металле, и у хрома она уже практически отсутствует—при 1350° она равна только 0,03% [1]. Высокую растворимость кислорода в металлах какого-либо ряда периодической системы следует ожидать только в определенном месте, а именно там, где отношение гм о имеет наиболее подходящую величину. Точно указать, где она достигается, нельзя, так как это отношение зависит также от распределения электронов в металле, и поэтому кажущийся радиус иона кислорода зависит и от характера связи. Практически оказывается, что только Ве, Т1, V, 2г, Н и часть лантанидов могут растворять значительные количества кислорода. Хотя уже в хроме растворимость его значительно падает, она, по-видимому, гораздо больше, чем у других металлов. Значительную растворимость в металлах той же группы следует ожидать также у водорода и азота, тоже образующих маленькие ионы. Как известно, такая растворимость наблюдается. [c.341]

    Химические свойства этих катионов определяются главным образом электростатическими взаимодействиями. В ряду Ы—Сз по мере увеличения размера иона обнаруживаются многие характерные изменения свойств. К ним относятся величины отношений радиусов и энергии кристаллических решеток, так что крупные катионы образуют более устойчивые соли с крупными же анионами. Чем крупнее катион, тем больше он образует нерастворимых солей. Связи обычно имеют ионный характер, даже в небольшом числе хелатных комплексов этих катионов, образуемых содержащими кислород анионными лигандами, например салицилальдегидом и бензоилацетоном. Константы устойчивости этих комплексов почти всегда слишком малы, чтобы комплексы можно было использовать в аналитических целях. Ограниченное использование в экстракции органическими растворителями могут найти некоторые ионные пары. Так, цезий можно экстрагировать раствором дипикриламина в нитробензоле. Для определения этих элементов гораздо полезнее применение атомной абсорбционной спектроскопии, пламенной фотометрии и аналогичных спектрографических методов. [c.337]

    Сокращение длины связей 81—О и 81—С1 можно объяснить исходя из валентных возможностей атомов кремния, хлора и кислорода. Известно, что атом кремния, валентное состояние которого описывается Ззр -гибридизацией, обладает акцепторными свойствами. У него все Зй-орбитали вакантны. Атомы кислорода и хлора обладают донорными свойствами. Они имеют неподеленные пары электронов.В процессе образования ЗЮЦ, 81(ОСгН5)4 и других подобных молекул неподеленная пара электронов донора переходит на Зй-орбиталь акцептора, которая становится общей как для донора, так и для акцептора. В результате этого возникает дополнительная связь между ними. Логично считать, что в подобных молекулах ковалентные связи атома 81 с атомами О или С1 усилены донорно-акцепторным взаимодействием. При такой двоесвязности сумма атомных радиусов близка к экспериментальному значению. Таким образом, наблюдаемое укорочение связей 81—0, 51—С1 и 81—С теоретически обосновано. Эти примеры показывают, что предсказать заранее значение той или иной длины связи не всегда возможно. Следовательно, экспериментальное определение геометрических параметров молекул является задачей весьма актуальной. С другой стороны, при интерпретации опытных значений длин связей необходим учет всех валентных возможностей взаимодействующих атомов. [c.212]


    Теплота хемосорбции кислорода на многих металлах очень велика (табл. 14). Кроме того, при ее определении разные исследователи получили сильно отличающиеся величины некоторые примеры, подтверждающие это, приведены в работе [67], где показано, что максимальные теплоты хемосорбции на титане, тантале, алюминии, ниобии, вольфраме, хроме, молибдене, марганце, железе, никеле и кобальте близки к теплотам образования массивных окислов этих металлов и меняются совершенно линейно с атомным радиусом металла. Теплоты хемосорбцни на родии, палладии и платине почти вдвое превышают теплоты образования стабильных окислов и также обнаруживают линейную зависимость от атомных радиусов. Бортнер и Парравано [72] исследовали теплоты хемосорбции кислорода на серебре и палладии и на их сплавах они нашли, что теплоты хемосорбции на серебре значительно превышают теплоты образования [c.206]

    ИОНОВ ДЛЯ металлов использованы атомные радиусы для координационного числа 12, для неметаллов — ковалентные радиусы по Паулингу, для ионов — радиусы для координационного числа 6. В таблице Состав окислов приведены сведения о формульном составе окисных фаз, их молекулярных массах и содержании кислорода в атомных и массовых процентах. Данные по областном гомогенности приведены только для очень небольшого числа окислов, так как до настоящего времени этим определениям не уделялось должного внимания. В таблице Кристаллическая структура приведены основные данные о структуре окислов, определенные на MOHO- или поликристаллических образцах следует отметить, что для многих окислов эти сведения неполны, так как не содержат данных либо о структурном типе, либо о пространственной группе или параметрах решетки. [c.9]

    Впервые понятие об атомных радиусах было введено Брэггом [52]. Для облегчения рентгенографического анализа сложных структур он сделал рабочее предположение, заключающееся в том, что каждому атому может быть придано определенное пространство в структуре, так что атомы не могут сблизиться на меньшие расстояния, чем сумма радиусов соответствующих им сфер [там же, стр. 171]. В известных пределах, согласно Брэггу, атомам каждого элемента можно приписать сферы, центры которых совпадают с центрами атомов, а диаметры представляют константу, характеристичную для данного элемента. Расстояние между центрами двух соседних атомов может быть выражено как сумма двух констант, представляющих радиусы соответствующих сфер [там же, стр. 170]. При этом оказывается, что такой закон аддитивности выполняется с высокой точностью. Так, например, если диаметр углеродного атома (в алмазе) равен 1,54 А, а диаметр атома кислорода (в окиси цинка) равен 1,30 А, то расстояние между центрами атомов углерода и кислорода, когда они соединены между собою, должно составлять 1,42А, тогда как рентгенографическим методом Брэггом было найдено, что оно равно 1,47 А. Брэгг видит согласие (agreement) между двумя этими числами, тогда как теперь разница в 0,05А рассматривалась бы, конечно, как неудовлетворительный результат для любой аддитивной схемы расчета межатомных расстояний. Для сравнения с последующими схемами выпишем из таблицы Брэгга [там же, стр, 180] атомные радиусы элементов, чаще всего встречающихся в органических соединениях С 0,77, N 0,65, [c.197]

    Скотт и Шерага [120] построили график зависимости экспериментально определенных значений Р для инертных газов [2, 7, 8] от их атомного номера и определили из этого графика значения р, соответствующие атомным номерам водорода, кислорода, галогенов и других атомов. Подставляя эти значения р в уравнение (3-17), они вычислили А. Чтобы определить В для Н- -Н-взаимодейст-вий, Скотт и Шерага минимизовали Ж при г = 2,8 А. Указанные авторы ошибочно отнесли свои положения минимумов энергии к вандерваальсовским радиусам, рекомендованным Бонди [17], значения которого в действительности приводят к расстоянию в 2,4 А. Для водорода и углерода Эйб и сотр. [4] в основном придерживались [c.73]


Органические аналитические реагенты (1967) -- [ c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Атомный кислород

Атомный радиус

Кислород определение

Кислород, атомный радиус



© 2025 chem21.info Реклама на сайте