Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеродистая сталь в некоторых других средах

    В результате распада е-фазы образуется некоторое количество тонкодисперсного цементита РедС. При двухчасовой термообработке стали, содержащей 0,95 % С, оно достигает максимума примерно при 400 °С (для стали с 0,07 % С при 300 °С). После отпуска при этих температурах катодные включения цементита составляют большую часть окружающей феррит поверхности, при этом гальваническое действие максимально. При других температурах цементит объединяется в частицы большего размера, и скорость коррозии снижается. Теперь частицы цементита настолько велики, что не могут полностью раствориться в кислоте и обнаруживаются среди продуктов коррозии. В то же время уменьшается образование газообразных углеводородов. При медленном охлаждении углеродистой стали от аустенитной области — выше 723 °С (гранецентрированная кубическая решетка) — цементит частично принимает форму пластинок, образуется структура, называемая перлитом. Перлит корродирует с относительно низкой скоростью, так как при распаде аустенита образуются [c.129]


    При проектировании и эксплуатации установок каталитического риформинга очень важно защищать аппаратуру и оборудование от водородной коррозии. При высоких температурах процесса водород восстанавливает углерод стали, меняя ее структуру. Применение углеродистых сталей допускается только в тех узлах, где температура ниже 250—260 °С. В других случаях применяют легированные стали и неметаллические покрытия (торкрет-бетон). Выше указывалось, что иногда торкрет-бетоном покрывают внутреннюю поверхность реактора, но все внутренние детали изготавливают из легированной стали. Применяют стали с 1,0—2,25% Сг и 0,5—1,0% Мо. Змеевики печей также изготавливают из хромо-молибденовой стали (2,25% Сг и 1% Мо) иногда содержание Хрома достигает 4—6%. Хром противостоит сероводороду, а молибден увеличивает прочность при высокой температуре и сопротивление водородной коррозии. Сероводороду в среде водорода присуща повышенная активность на некоторых зарубежных установках на- [c.211]

    Изучая коррозию углеродистых и низколегированных сталей в керосине (топливо Т-1) в процессе его хранения (при 20°), мы обнаружили, что введение в керосин небольших добавок (0,05—0,1%) сульфированной стеариновой кислоты, хлорированного каучука, хлорированного парафина, В-наф-тола, й- и р-нафтиламина, дифениламина и других веществ позволяет задержать и даже предотвратить коррозию указанных металлов . Опыты с углеводородными растворами масляной кислоты, в которые были помещены стальные образцы, показали, что в присутствии некоторых из перечисленных веществ (хлорированный парафин, хлорированный каучук) коррозия стали замедляется . По-видимому, эти вещества в углеводородных средах и тормозят окисление углеводородов кислородом воздуха, и замедляют коррозию стали образующимися кислотами. [c.171]

    Коррозия железа и углеродистой стали в речной и морской воде, во влажной атмосфере и некоторых других средах протекает с кислородной деполяризацией. В этом случае катодные микроучастки микро-коррозионных элементов следует рассматривать как кислородные электроды, на которых восстанавливается кислород  [c.176]

    В практике химических предприятий часто приходится сталкиваться с так называемой щелочной хрупкостью углеродистых сталей. Установлено, что при наличии растягивающих напряжений растрескивание может иметь место, если концентрация щелочи превышает 10—15% при температуре выше 65 С. Характерна также МКК углеродистых сталей в горячих концентрированных растворах нитратов. Этот вид коррозии развивается только в кислых и нейтральных растворах. В слабощелочной котельной воде добавки нитратов, наоборот, препятствуют развитию МКК паровых котлов. Описаны случаи меж-кристаллитного разрушения углеродистой стали под действием сероводорода, цианида водорода и некоторых Других сред. [c.56]


    Углеродистая сталь в некоторых других средах [c.111]

    Подобно углеродистым сталям, низколегированные стали нестойки в естественных коррозионных средах и растворах большинства неорганических и органических кислот, но хорошо сопротивляются воздействию растворов щелочей и некоторых других химических веществ. Соответствующие сведения приводятся в таблицах коррозионной стойкости. [c.98]

    Если в конструкции корпуса используют и аустенитные, н углеродистые стали, то необходимо учитывать различие их физических свойств температурный коэффициент линейного расширения для аустенитной стали приблизительно в 1,5 раза больше, чем для углеродистой, а теплопроводность — в 3—4 раза меньше. Вследствие этого при сварке разнородных сталей происходит локальное нагревание с последующим возникновением значительных остаточных напряжений, которые снижают коррозионную стойкость аустенитных сталей. При сварке разнородных сталей происходит диффузия легирующих элементов в углеродистую сталь, что снижает коррозионную стойкость аустенитной стали. По этим причинам следует в одних случаях вводить упругие элементы, а в других — отдалять стыки аустенитной и углеродистой стали от мест воздействия агрессивных сред введением промежуточных элементов. Некоторые варианты подобных конструкций показаны на рис. 4.16. [c.116]

    В настоящее время вопросам бактериальной коррозии в природных средах (наземной, подземной и подводной), а также в разных отраслях промышленности посвящено значительное число исследований [42—47). Некоторые ученые считают, что из общего числа повреждений 15—20% приходится на долю микробиологической коррозии [43]. Изучена группа бактерий, вызывающих разрушение не только углеродистой стали, но и нержавеющих сталей, меди, латуни, хрома, алюминия, ванадия и других металлов. Эти микроорганизмы проявляют себя как некие биологические деполяризаторы. [c.14]

    Легированные стали. Легированными называют стали, содержащие добавки таких элементов, как, например, никель, хром, молибден, ванадий, вольфрам. Эти элементы могут присутствовать в различных комбинациях и количествах, обусловливая те или иные свойства стали — прочность, стойкость к коррозии в определенных средах и т. д. Например, хромоникелевые стали характеризуются повышенной вязкостью и прочностью, а главное, высокой стойкостью к действию азотной и фосфорной кислот, растворов некоторых солей и к другим средам, разрушающим углеродистую сталь. Хромистые стали стойки к действию азотной и некоторых органических кислот, растворов многих солей и щелочей и обладают высокой жаропрочностью. [c.7]

    Эти аспекты относятся как к электродному потенциалу, так и к составу коррозионной среды. Влияние потенциала на процесс растрескивания изменяется от одной системы (металл—раствор) к другой (см. раздел 5.1), но некоторые особенности влияния этого фактора следует обсудить применительно к углеродистым сталям. Эти материалы разрушаются в различных областях потенциалов в зависимости от состава коррозионной среды, в которую они помещены. Об этом свидетельствуют результаты опытов, включавших потенциостатический контроль (рис. 5.68). На рис. 5.68 также [c.321]

    Конструкционные стали могут быть и углеродистыми и легированными. Основные легирующие элементы конструкционных сталей Сг, N1, Мп. Эти стали хорошо поддаются обработке давлением, резанием они хорошо свариваются. Конструкционные стали применяются для изготовления деталей машин, конструкций и сооружений. Инструментальные стали тоже могут быть и углеродистыми и легированными. Основной легирующий элемент — хром. Эти стали характеризуются высокой твердостью, прочностью, износостойкостью. Их применяют для изготовления режущих и измерительных инструментов, штампов и т. п. К сталям с особыми свойствами относятся нержавеющие, жаростойкие, жаропрочные, магнитные и некоторые другие стали. Нержавеющие стали устойчивы против коррозии в агрессивных средах, жаростойкие — против коррозии при высоких температурах. В энергетике важны жаропрочные стали, сохраняющие высокие механические свойства при нагревании до значительных температур, что важно при изготовлении лопаток газовых турбин. В электротехнике важны магнитные стали, которые используются для постоянных магнитов и сердечников магнитных устройств, работающих в переменных полях. Постоянные магниты делают из высокоуглеродистых сталей, легированных хромом или вольфрамом. Они хорошо намагничиваются и долго сохраняют остаточную индукцию. Сердечники, наоборот, делают из низкоуглеродистых сталей, легированных кремнием. Они легко перемагничиаются и характеризуются малыми электрическими потерями. [c.296]


    Приведенное соотношение между скоростью газовой коррозии металлов и температурой может быть осложнено или нарушено, если с изменением температуры изменяется структура или некоторые, другие свойства металла или образующейся на нем оксидной пленки. В состав окалины углеродистых сталей в зависимости от температуры среды могут входить магнетит ГвзО , гематит Рег0з(при нагреве до 600 С)й вьюстит РеО (при нагреве выше 600 "С). [c.29]

    Коррозия начинается с поверхности металла и при дальнейшем развитии этого процесса, как правило, распространяется вглубь. Металл при этом может частично или полностью растворяться или же могут образоваться продукты коррозии в виде тонких нерастворимых плёнок, которые препятствуют дальнейшему а. рессивному влиянию среды (например, коррозия высоколегированных коррозионностойких сталей в воде и атмосфере). Могут образовываться также осадки на металле в виде оксидов и гидроксидов металла (например, ржавчина при коррозии углеродистой стали во влажной атмосфере, гидрат окисла цинка при коррозии цинка в воде, окалина при высокотемпературной коррозии стали в отсутствие влаги и т.д.). При этом под окалиной принято понимать толстые (видимые), более 5000 ангстрем, продукты в основном высокотемпературного окисления, образующиеся на поверхности стали и некоторых других сплавов при взаимодействии со средой, содержащей кислород, в отсутствие влаги. Для железа, в зависимости от температуры окисления окалина состоит в основном из ГеО(вюстиг), (гематит), (магнетит) или их сочетаний. [c.8]

    Другой формой структурной нестабильности является графи-тизация, вь1зываемая распадом цементита РвзС с образованием железа и графита. Свободный графит выделяется в виде цепочек в зонах сварных швов. Графитизация приводит к снижению ударной вязкости. Распад цементита происходит при температурах выше 450" С. Поэтому данный вид термической поврежденности может наблюдаться в колоннах, работающих в условиях высокотемпературных технологических процессов (например, в реакторах гидроочистки, риформинга и т. п.). Обычно корпуса такого оборудования в случае изготовления их из углеродистых сталей защищены футеровкой, поэтому опасность возникновения графитизации мала. Однако некоторые элементы аппарата (например, штуцера ввода сырья) непосредственно контактируют с высокотемпературной технологической средой. В этом случае рекомендуют осуществлять периодический контроль на графитизацию [13]. [c.25]

    Коррозионная стойкость в атмосферных условиях и других средах в 1,5 раза выше по сравнению с углеродистой сталью марки ВСтЗ. Применение низколегированной стали вместо углеродистой обыкновенного качества позволяет уменьшить массу конструкции на 20%. Химический состав некоторых марок низколегированной стали представлены в табл. 14, [c.27]

    Несмотря на то что нержавеющие стали и сплавы созданы специально для эксплуатации в различных агрессивных средах, их коррозионная усталость изучена меньше, чем углеродистых сталей. В ранних работах, выполненных в 20-х годах Мак Адамом и другими исследователями, показано, что нержавеющие стали хорошо сопротивляются коррозионноусталостному разрушению в пресной воде и ее парах, 3 %-ном растворе Na I, а также других сравнительно малоагрессивных средах. Однако некоторые нержавеющие-стали, например мартенситного класса, обладая высокой коррозионной стойкостью в ненапряженном состоянии, имеют низкое сопротивление коррозионной усталости. Часто условный предел коррозионной выносливости этих сталей такой, как и обычных углеро- [c.58]

    Покрытие цинком вызывает появление малых остаточных напряжений в приповерхностном слое изделия, причемг цинк во всех средах ано-ден по отношению к углеродистой стали. Это делает покрытие цинком наиболее действенным способом повышения коррозионно-усталостной прочности стали. Гальваническое покрытие кадмием дает меньший эффект защиты, так как кадмий только в некоторых коррозионных средах аноден по отношению к стали, например, в 3 %-ном растворе ЫаС1, в других же средах он либо имеет тот же потенциал, что и сталь (например, в пресной воде), либо является катодом. [c.187]

    Применяемые в производстве эмульсионных каучуков реакционные коллоидно-химические системы сложны по составу и чувствительны к примесям солей и окислов металлов. Попадание железа и некоторых других металлов понижает активность системы и изменяет ход технологического процесса, а также нарушает кондиционность получаемых каучуков. Согласно техническим требованиям, в каучуках указанных выше марок может содержаться железа не более 0,006% и меди не более 0,0004%. Учитывая особенности технологического процесса и высокие требования, предъявляемые к чистоте эмульсионных каучуков и латексов, аппаратуру и трубопроводы из незашищенной углеродистой стали применяют главным образом в безводных средах. [c.317]

    Таким образом, радикальным средством защиты оборудования, подверженного повышенному коррозионному износу, является замена углеродистой стали на более коррозионно-стойкую в данных условиях. Так, в некоторых случаях даже среднелегированная сталь Х5М дает хоронгае результаты, а хромоникелевые стали Х18Н10Т отличаются высокой коррозионной стойкостью практически во всех средах при производстве масла. Применение этих сталей в качестве конструкционного материала для изготовления труб конденсаторов-холодильников, коллекторов, трубопроводов, внутренних элементов и для облицовки отпарных колонн, рабочих колес насосов и другого оборудования, быстро выходящего из строя в средах газообразного пропана, фенольной воды и обводненного растворителя, в несколько раз увеличивает срок службы этого оборудования и позволяет практически полностью решить наиболее актуальные вопросы снижения коррозии. [c.36]

    Во влажных хлорорганических жидкостях, гидролизующихся с образованием соляной кислоты, стойки некоторые высоконикелевые сплавы. Однако промышленный выпуск теплообменников из монель-металла и сплавов типа хастеллоев у нас еше недостаточен. Поэтому в существующем производстве тиоколов на участках, связанных с теплообменом, пока приходится применять аппараты из хромоникелевой или даже из нелегированной стали с утолщенными стенками, рассчитанными на интенсивный коррозионный износ. По стойкости в указанных средах углеродистая и хромоникелевая стали несколько различаются. Так, например, в азеотропной смеси этиленхлоргидрииа с водой, в соотношении 1 1, при 100° С сталь Ст. 3 корродирует равномерно со скоростью 49 мм/год. Легированная сталь Х18Н9Т в тех же условиях подвергается коррозии со скоростью - 25 мм/год, но при этом наряду с равномерной коррозией иногда наблюдаются точечная и язвенная коррозия. Как видно из приведенных цифр, скорость коррозии обоих металлов недопустимо высока, поэтому конденсационно-охлаждающая аппаратура, не говоря уже о кипятильниках и других обогревающих устройствах, быстро выходит из строя. [c.350]


Смотреть страницы где упоминается термин Углеродистая сталь в некоторых других средах: [c.116]    [c.27]    [c.441]    [c.79]    [c.7]    [c.67]    [c.121]    [c.572]   
Смотреть главы в:

Коррозия и защита от коррозии Том 3 -> Углеродистая сталь в некоторых других средах




ПОИСК





Смотрите так же термины и статьи:

Другие среды



© 2024 chem21.info Реклама на сайте