Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контактная коррозия коррозионный ток пары

    Особенно коррозионно-опасным можем быть место контакта двух разнородных металлов-контактная коррозия. Между одним металлом, например Ре, и другим металлом, например 8п или Си, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (8п, Си) и более активный металл разрушается (корродирует). [c.160]


    Многие факторы могут влиять на условия протекания коррозионных реакций поэтому определение э. д. с различных комбинаций металлов для предсказания протекания контактной коррозии в конкретных условиях службы неправомерно. Многочисленные покрытия, которые по предположению должны быть катодами, фактически работали в качестве анодов [2—5]. Составлены специальные таблицы гальванических пар в различных средах [6—8]. [c.394]

    Для увеличения коррозионной стойкости М.с. защищают неметаллич. неорг. покрытиями, лаками, красками. При соединении деталей из М. с. с деталями из др. металлов следует избегать контактной коррозии. Коррозионная защита М. с. обеспечивает надежную работу деталей из них в атм. условиях, щелочных средах, минер, маслах, бензине, керосине. М. с. не применяют для работы в морской воде, р-рах и парах солей и к-т. Нек-рые высокопрочные деформируемые М. с. склонны к коррозии под напряжением. [c.629]

    Наличие примесей в металлах для процессов электрохимической коррозии имеет большое значение, но образование коррозионных гальванопар возможно в результате того, что различные участки металлической поверхности находятся в неодинаковых условиях. Например, они могут быть в контакте с растворами одного и того же элемента, но разной концентрации или иметь неодинаковый доступ к кислороду и т. п. Нередко электрохимическая коррозия развивается в результате контакта разных металлов. Тогда коррозионные пары называются макропарами, а сама коррозия — контактной. [c.169]

    При коррозии металлов в морской воде наблюдается и контактная коррозия, которую трудно избежать, особенно судам, вследствие высокой проводимости морской воды ( 3-10 0м см ). При наличии у них пары стальной корпус— бронзовый гребной винт коррозия усиливается. Чем больше общая площадь металла, работающего катодом при контактной коррозии, по отношению к площади анода, тем выше разрушающее действие коррозионного процесса. [c.30]

    В выводах дается заключение о механизме контактной коррозии исследуемых металлов в условиях опыта и оценивается коррозионная стойкость анода гальванической пары по десятибалльной шкале (приложение 1). [c.43]

    Величина контактной коррозии пропорциональна силе тока коррозионной пары /. который приближенно определяется по следующему выражению  [c.7]

    Приведенные данные наглядно характеризуют сущность отдельных видов коррозии. Следует отметить, что встречаются случаи коррозионных разрушений, одновременно обнаруживающих черты двух или нескольких видов. Например, контактная коррозия биметаллического наконечника кабеля (пара Си—А1) ведет к интенсивному уменьшению массы алюминия в месте контакта и к язвенной коррозии на остальной его поверхности. [c.5]


    Указанные модели позволяют приближенно описать широкий класс коррозионных пар, возникающих при контактной коррозии или протекторной защите не только плоских, но и искривленных металлических поверхностей (в последнем случае предполагается, что радиус кривизны поверхности 2 значительно превышает габаритные размеры поверхности ). [c.120]

    Рассмотренные выше закономерности, которые были вскрыты на основе электрохимических исследований, хорошо подтверждаются непосредственными опытами по определению тока контактных пар (рис. 59). Резкое увеличение контактной коррозии, как и следовало ожидать из анализа потенциостатической кривой, наблюдается при контакте алюминия с платиной в концентрированных растворах кислоты. Максимальный ток, возникающий при контакте алюминия с нержавеющей сталью, наблюдается примерно в 30%-ной азотной кислоте. По мере увеличения концентрации азотной кислоты ток при контакте алюминия с нержавеющей сталью падает, а не растет, как в случае платины. Объясняется это, как показывает анализ коррозионных диаграмм для этой пары (рис. 60), возрастанием анодной поляризуемости алюминия. Поскольку в данном случае потенциал алюминия не выходит за пределы потенциала активирования, то это способствует уменьшению контактного тока. [c.183]

    В машинах и оборудовании для животноводства и кормопроизводства одним из частых видов разрушения является контактная коррозия. Она сосредотачивается на весьма ограниченной площади и часто приводит к разрушению всей конструкции. Сведения о коррозионном поведении контактных пар в этих условиях ограничены. [c.85]

    Коррозионную активность меди в охлаждающей воде доменной печи после обработки композицией сравнивали с коррозионной активностью без обработки. Полученные результаты показывают, что скорость коррозии меди понижается на 84 %. Кроме этого определялась коррозия в проточной охлаждающей воде короткозамкнутой гальванической пары медь — малоуглеродистая сталь в виде отрезков труб. Хотя некоторое доказательство наличия контактной коррозии между медью и малоуглеродистой сталью наблюдалось как в случае обработки ингибирующей композицией, так и без нее, однако секция трубы в случае обработки ингибирующей композицией содержала меньше осадка и подвергалась меньшей коррозии. [c.62]

    К сожалению, многие конструкторы и технологи слабо знакомы с вопросами коррозии. До сих пор их в основном лишь предупреждали об опасности контактной коррозии, но им не были предложены научно обоснованные методы расчета контактной коррозии и критерии допустимости того или иного контакта. Поскольку сведения о коррозионном поведении контактных пар в различных условиях весьма ограничены, а методы расчета отсутствовали, вопрос о допустимости того или иного контакта решался часто не всегда правильно. [c.19]

    До сих пор заключения о контактной коррозии делали в основном на основании начальной разности потенциалов, поскольку эти данные были более доступны. Однако, как было выше показано, электродвижущая сила элемента, хотя и является важной характеристикой, не определяет однозначно коррозионного тока элемента. При значительной разности потенциалов ток пары благодаря большой поляризации может быть очень малым и, наоборот, может быть пара с незначительной разностью потенциалов, которая, однако, благодаря малой поляризуемости будет давать большой ток. Поэтому правильно судить об опасности того или иного контакта можно только на основе значений токов. К сожалению, до сих пор- не было предложено удовлетворительных методов определения тока пар для условий атмосферной коррозии. [c.112]

    Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят > приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен- [c.83]

    Если исходить из электрохимического механизма коррозии, то величина контактной коррозии Q пропорциональна току коррозионной пары, т. е. Q- =kI, где к = хА Рп т —время прохождения тока Л — атомный вес металла п — валентность анодного металла в данном коррозионном процессе Р — число Фарадея. [c.79]

    Некоторые примеры крепления образцов при испытании на склонность металлов к контактной коррозии в дистиллированной воде при повышенных температурах и давлении приведены в работе [242]. Помимо описанного метода, контактная коррозия в лабораторных условиях исследуется путе измерения коррозионных токов моделируемых макропар. Примеры исследования контактной коррозии по измерению силы тока пар в различных средах приведены в работах [243, 244]. [c.147]


    Цель настоящей работы — изучение процесса контактной коррозии (расчет потерь массы и контролирующего фактора коррозионного процесса) по коррозионной диаграмме. Последнюю получают измерением величины тока и потенциалов электродов коррозионной пары в нейтральном электролите. Если в качестве электродов гальванического элемента служат анодные и катодные составляющие структуры какого-либо металла, то такая пара может моделировать работу коррозионных микроэлементов данного металла. [c.117]

    Коррозионные диаграммы имеют большое значение для изучения и расчетов процессов электрохимической коррозии металлов. На основании коррозионной диаграммы можно определить величину тока пары и, следовательно, скорость коррозии анода (саморастворение — растворение вследствие работы микропар при этом не учитывается, так как оно мало по сравнению с контактной коррозией), установить контроль коррозионного процесса и дать его количественную оценку. [c.117]

    При контакте двух металлов Л и /С со стационарными потенциалами в определенной среде фа и фк сила тока коррозионного элемента (пары) в общем случае определяется сопротивлением катодного и анодного процессов и омическим сопротивлением. С увеличением разности между стационарными потенциалами, катода и анода, уменьшением омического сопротивления и сопротивления катодного и анодного процессов сила тока пары и, следовательно, контактная коррозия увеличиваются. [c.104]

    При конструировании оборудования и установок приходится часто применять разнородные материалы. Об опасности контакта таких материалов можно судить по величине их стандартных электродных потенциалов. Одним из эффективных мероприятий, препятствующих контактной коррозии, является нарушение замкнутости электрической цепи разнородных материалов, образующих гальваническую пару, путем изоляции их друг от друга неэлектропроводными материалами. В зависимости от условий применения контактные поверхности, например механических уплотнений, изготавливаются из различных комбинаций соответствующих материалов. Важные требования к материалам, определяющие окончательный выбор контактирующих пар, следующие совместимость, коррозионная стойкость к истиранию пылью, к абразивному износу стабильность размеров, стойкость к тепловому удару. [c.64]

    Результаты исследования контактной коррозии титана с алюминием и нержавеющей сталью в серной кислоте приведены в табл. 33. В разбавленной (0,5%-ной) серной кислоте потенциал титана равен +0,43 в, а потенциал алюминия равен —0,2 в. В соответствии с этими значениями потенциалов в паре Т1—А1 анодом пары является алюминий. Коррозия алюминия вследствие этого, как видно из таблицы, возрастает. Титан и его сплавы, несмотря на то, что они являлись катодами коррозионных пар, подвергались коррозии. Причиной этого является отрицательный защитный эффект, проявляющийся при катодной поляризации титана в тех кислых средах, в которых он находится в отсутствии катодной поляризации в пассивном состоянии . [c.64]

    Ряд теоретических и практических вопросов коррозии часто выясняют, исследуя работу модели коррозионного элемента. Распространению этого метода способствовали исследования Эванса, Г. В. Акимова и его щколы. Модель микроэлемента представляет собой замкнутые металлическим проводником анод и катод, погруженные в коррозионную среду (рис. 225). Такая система моделирует корродирующий сплав, так как коррозию сплава в электролите можно упрощенно представить как работу бинарного гальванического элемента анод—катод. Приведенная на схеме установка позволяет исследовать влияние на величину тока и потенциалы электродов внещнего сопротивления пары, перемешивания раствора в анодном и катодном пространстве, различных добавок к раствору в анодном и катодном пространствах. На основании такого исследования можно сделать вывод о влиянии перечисленных факторов на поляризацию анода и катода, о степени анодного, омического и катодного контроля и контролирующем факторе коррозии. Аналогичные установки используют для исследования электрохимического поведения разнородных металлов в контакте друг с другом, т. е. контактной коррозии и протекторной защиты. Специальные установки позволяют проводить эти опыты одновременно на большом числе гальванических пар. [c.391]

    Местная коррозия в результате возникновения гальванических макропар наблюдается и в случае различия электрохимических характеристик отдельных участков одного и того же металла. Контактная коррозия в лабораторных условиях исследуется путем моделирования макропар, измерения их коррозионных токов, построением коррозионной поляризационной диаграммы, по величине тока и потенциалам электродов пары в электролите при изменении внешнего сопротивления и т. д. Если электродами гальванической пары являются анодные и катодные структурные составляющие какого-либо металла, то такая [c.348]

    Метод измерения тока, возникающего между двумя электродами, применяют для моделирования коррозионных элементов при изучения контактных пар, щелевой коррозии, влияния аэрации и т. д. [c.143]

    Измерение силы тока между двумя электродами в электролите применяется как метод для моделирования коррозионных элементов при изучении контактных пар, щелевой коррозии, влияния аэрации, определения эффективности электрохимической защиты, защитных свойств покрытий. [c.33]

    Электрическое разъединение разнородных (е электрохимическом отношении) металлов производится в целях уменьшения скорости контактной коррозии полиметаллических конструкций и сооружений. При расчете требуемой величины сопротивлений разъединения различают коргю-зионные пары и многоэлектродные коррозионные системы. [c.242]

    Электрическое разъединение металлов, образующих коррозионную пару, позволяет уменьшить (или, в предельном случае, полностью устранить) контактную коррозию одного из указанных металлов (обладающего более отрицательным стационарным потенциалом). Достигаемое nos этом снижение скорости контактной коррозии определяется величиной сопротивления разъединения (г р з), которая может быть приближеиис-рассчитана в следующем порядке  [c.242]

    Недостатком большинства латуней (содержащих более 20% цинка) является склонность к коррозионному растрескиванию в присутствии влаги, кислорода, аммиака, углекислоты, серного ангидрида. Для исмючения контактной коррозии не рекомендуется применять латуни в паре с железом, алюминием и цинком. [c.83]

    Особенно сильной коррозии часто подвергаются сварные соединения, если не приняты меры к тому, чтобы их потенциал не оказался менее благородным, чем потенциал основного металла. Бровер наблюдал сильную коррозию сварного шва на трубках из нержавеющей стали типа 304 (18-8). Трубки многократно травили ингибированной 10%-ной соляной кислотой при температуре 70° С. Лабораторные коррозионные испытания подобных пар в ингибированной соляной кислоте показали, что коррозия в основном развивается на сварном шве (более 250 мм1год). Скорость коррозии металла шва (сталь типа 312) в изолированном виде оказалась в 12—15 раз больше скорости коррозии малоуглеродистой стали или нержавеющей стали типа 304. Разрушение сварного шва в теплообменниках автор объясняет возникновением контактной коррозии между аустенитной и ферритной фазами сплава. Исследования стационарных потенциалов и поляризационных характеристик типичных аустенитных и ферритных нержавеющих сталей подтвердили это предположение. Было показано, что наиболее целесообразно в этом случае использовать инконель А и сварочные электроды из стали типа 310 (24—26% Сг 19—22% Ni макс. 0,25% С). Для трав- [c.185]

    В табл. 3 на рисунках показаны основные типы электрохимической гетерогенности, от которых в первую очередь зависят различные виды коррозионных разрушений. Факторами, определяющими вид разрушения, являются характер электрохимической гетерогенности и стабильность распределения анодных и катодных участков по поверхности во времени. В некоторых случаях электрохимическая гетерогенность поверхности сплава связана с образованием стабильно работающих коррозионных пар, что приводит к ярко выраженной местной коррозии, например, контактная коррозия разнородных металлов, коррозия вследствие неравномерной аэрации, межкристаллитная коррозия и коррозионное растрескивание. Подобные виды коррозии надо относить к явно гетерогенно-электрохимическому механизму коррозии. В других случаях, например, при структурноизбирательной коррозии, вследствие вытравливания отдельных кристаллитов, расположение катодов и анодов коррозионных пар не жестко фиксировано на поверхности. Это также приведет к местной коррозии, но, естественно, уже в микромасштабах. Примером может служить выявление ноликристаллической структуры металла при травлении шлифа. В микромасштабе подобный вид коррозионного разрушения можно условно рассматривать и как равномерный. [c.24]

    Контактная коррозия возникает и в случае различия электрохимических характеристик разных участков одного и того же металла. В лабораторных условиях контактную коррозию исследуют измерением коррозионных токов моделируемых макропар. При этом рассчитывают весовые потери и устанавливают контролиру-ЮШ.ИЙ фактор коррозии по коррозионной диаграмме, построенной по измеряемым значениям силы тока и потенциалов электродов коррозионной пары в нейтральном электролите при изменении внешнего сопротивления. Если в качестве электродов гальванического элемента служат анодные и катодные составляющие структуры какого-либо металла, то такая пара может моделировать работу коррозионных микроэлементов данного металла. [c.45]

    В активных средах для анодного покрытия скорость коррозии определяется разностью потенциалов контактирующих электродов (покрытие - основа), а длительность защиты - скоростью растворения покрытия и его толщиной. Поэтому повышение коррозионной стойкости самого покрытия способствует увеличению долговечности системы покрытие — основа. В активных средах анодное растворение металлов протекает при поляризации анодного процесса менее значительной, чем для катодного. Контактный ток пары в этом случае определяется в основном перенапряжением катодного процесса и связан со вторичными явлениями, изменяющими поведение контактных пар. Методы, повышающие катодный контроль например, повышение перенапряжения водорода для сред с водородной деполяризацией или уменьшение эффективности работы катодов, в том числе за счет вторичных явлений, будут способствовать снижению скорости саморастворения покрытия и, наоборот, катодные включения с низким перенапряжением восстановления окислителя стимулируют коррозионное разрушеше системы. [c.71]

    Классификация К. м. определяется конкретньт1и особенностями среды и условиями протекания процесса (подводом окислителя, агрегатным состоянием и отводом продуктов коррозии, возможностью пассивации металла и др.). Обычно выделяют К. м. в природных среда -атмосферную коррозию, морскую коррозию, подземную коррозию, био-коррозию нередко особо рассматривают К. м. в пресных водах (речных и озерных), геотермальных, пластовых, шахтных и др Еще более многообразны виды К. м. в техн. средах, различают К. м. в к-тах (неокислительных и окислительных), щелочах, орг. средах (напр., смазочноохлаждающих жидкостях, маслах, пищ. продуктах и др.), бетоне, расплавах солсй, оборотных и сточных водах и др. По условиям протекания наряду с контактной и щелевой К. м. выделяют коррозию по ватерлинии, коррозию в зонах обрызгивания, переменного смачивания, конденсации кислых паров радиационную К. м., коррозию при теплопередаче, коррозию блуждающими токами и др. Особую группу образуют коррозиоиномех. разрушения, в к-рую входят помимо коррозионного растрескивания и коррозионной усталости фреттинг-коррозия, водородное охрупчивание, эрозионная коррозия (в пульпах и суспензиях с истирающими твердыми частицами), кавитационная коррозия (при одноврем. воздействии агрессивной среды и кавитации). В общем случае воздействие агрессивной среды и мех. факторов на разрушение неаддитивно. Напр., при эрозионной К. м, потери металла вследствие разрушения защитной пленки м, б. намного больше суммы потерь от эрозии и К. м. по отдельности. [c.482]


Смотреть страницы где упоминается термин Контактная коррозия коррозионный ток пары: [c.459]    [c.127]    [c.194]    [c.480]    [c.80]    [c.49]    [c.59]    [c.459]    [c.127]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Контактная коррозия

Контактные пары

Ток коррозии коррозионный



© 2024 chem21.info Реклама на сайте