Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрий амид, действие на фенолы

    Едкие щелочи при нагревании действуют на пиридин аналогично амиду натрия. При этом происходит выделение водорода и образование а- и т-оксипиридинов. Эти же соединения могут быть получены при действии на соответствующие аминопиридины азотистой кислоты. Оксипиридины подобны фенолам они дают цветную реакцию с хлорным железом, растворяются в водных щелочах, а- и у-Оксипиридины—твердые вещества (темп, плавл. а-оксипиридина 107 °С темп, плавл. т-оксипиридина 148 °С) они таутомерно превращаются в кетосоединения—пиридоны  [c.612]


    Соединения класса С. Гидролизом с помощью горячего раствора едкого натра (28, г) пользуются для превращения амидов, замещенных амидов, нитрилов и некоторых ароматических аминов при замещающих отрицательных группах в соответствующие кислоты или фенолы с выделением аммиака или аминов. Нитрогруппы можно открывать, действуя оловом с соляной кислотой (32), гидратом закиси железа (12) или цинком с хлористым аммонием (36). Спиртовые группы открываются реакцией с хлористым ацетилом (1, г), а карбонильные группы — с гидроксил  [c.91]

    Многие циклогексеноны получают реакциями замыкания циклов (см. разд. 5.2.9), тогда как другие доступны в результате восстановления эфиров фенолов щелочными металлами в жидком аммиаке (восстановление по Берчу) см. обзоры [36, 392, 393]. Восстановление по Берчу приводит [схема (103)] к 2,5-ди-гидроароматическим соединениям (138), причем протоны предпочтительно присоединяются к незамещенным атомам углерода по своему влиянию заместители располагаются в ряд 0Ме>А1к>>Н. Осторожный кислотный гидролиз освобождает циклогексен-З-он. Литий в качестве восстановителя имеет преимущества перед натрием и калием, и он совместим с такими сорас-творителями, как диэтиловый эфир или диоксан, которые могут быть необходимы в случае трудно растворимых субстратов. Добавки кислого характера, обычно метанол, этанол или хлорид аммония, применяют для того, чтобы избежать накопления амид-ионов, которые способны изомеризовать несопряженное 2,5-ди гидроароматическое соединение в сопряженный диен. Последний может восстана Ьливаться далее под действием избытка металла. Многочисленные модификации, включая использование тщательно перегнанного аммиака и недорогих натрия и калия, а также примеры применения реакции к стероидным молекулам описаны в [393]. [c.649]

    Стадию металлирования (К) можно осуществить действием различных оснований, причем чем слабее основание, тем более высокая температура необходима для проведения реакции. Например, превращение хлорбензола в фенол действием водного гидроксида натрия требует 250°С. С более сильным основанием трет-бутилатом калия это превращение проходит при ж150°С, в то время как наиболее мощные основания — алкил- и арилметаллы — позволяют проводить реакцию при температуре между —70 и 35 °С. Однако наиболее часто в качестве оснований используются амиды металлов, например амид натрия или пиперидид лития. Эти основания достаточно сильны, их удобно получать и они могут быть использованы как в инертных растворителях, так и в избытке исходного амина в широком интервале температур. Свободные амины, например пиперидин и К,К,К, К -тетраметилэтилен-диампн, также катализируют реакцию за счет увеличения сольватации катиона [94]. Как сообщалось, большими преимуществами [c.604]


    До сих пор оксипроизводное ферроцена было неизвестно. Бенсон и Линдсей [1] синтезировали бмс-(1-окси-3-метилциклопентадиенил)железо]взаимо-действием З-метил-2-циклонентенона с амидом натрия в жидком аммиаке и хлористым железом, Хольцбехер [2] показал, что ацетат меди в водных растворах окисляет фенилборную кислоту до фенола, а о- п ж-нитрофенил-борные кислоты — до 2,2 - и 3,3 -динитродифенила соответственно. [c.187]

    Метилирование. Кислоты и фенолы при взаимодействии с диазометаном образуют обычно чистые продукты — соответственно сложные и простые эфиры. N-Метилиро-вание амидов и 0-метилирование спиртов осуществляется под действием иодистого метила в диметилформамиде в присутствии окиси серебра в качестве основания используется также гидрид натрия. 0-Метилирование — хороший способ повышения летучести полиолов, например таких, как сахара. Превращение кетонов и альдегидов в кетали и ацетали способствует не только новыше-нию летучести, ио и направленному изменению масс-снектрометрической фрагментации, характеристичной для кеталей и ацеталей, что дает ценную структурно ю информацию. [c.215]

    В 1867 г. Август Кекуле описал превращение бензол-сульфоната натрия в фенол при сплавлении со щелочью [1]. Эта реакция нуклеофильного замещения в ароматическом ряду вскоре приобрела такую известность, что Гребе и Либерман всего двумя годами позже использовали ее в своем синтезе ализарина [2]. Уже в 1875 г. Барт и Зенхофер [3] наблюдали перегруппировки в процессе замещения такого типа преимущественное образование резорцина при сплавлении изомерных бензол-дисульфонатов со щелочью. Замещение в арилгалогенидах при действии амидов щелочных металлов также сопровождалось перегруппировками, несовместимыми с последовательными присоединением и отщеплением обычного, так называемого активированного нуклеофильного замещения. [c.200]

    В литературе можно найти множество примеров получения макроциклов циклизацией эквимолярных количеств К,1Ч-б с-арил- или алкилсульфамидов с а,со-дигалогенидами [133—138]. На основе этих методов осуществляли циклизацию реакцией быс-тозил-аминов 288 и 289 с 1,10-дибромдеканом в присутствии карбоната калия в диметилформамиде. В случае амида 290 ввиду его низкой растворимости в диметилформамиде реакцию проводили в смеси метанол — диметилформамид, в качестве основания использовали этилат натрия [133]. Выходы полученных анса-соеди-нений 295, 296 и 297 составляют соответственно 45, 23 и 26%. В случае б с-метансульфамида 2,5-диме-токси-л-фенилендиамина, который в противоположность соединению 290 более растворим в диметилформамиде, при взаимодействии с 1,10-дибромдеканом в присутствии карбоната калия при 90 °С выход соединения 299 составляет 68%. Амиды 295, 296 и 299 гидролизовали под действием бромистого водорода в смеси ледяная уксусная кислота — бензол — фенол и получали соединения 300, 301 и 302 с выходами 50, [c.102]

    Способность пиримидина к реакциям замещения довольно мало изучена. Можно, однако, сказать, что в этом отношении он отличается от пиридина, как пиридин от бензола. Так, к электрофильным замещениям он способен еще меньше, чем пиридин, а если замещение происходит, то заместитель вступает в положение 5 (р-положение по отношению к обоим азотам). Действие амида натрия на 6-метилпиримидин приводит в результате нуклеофильного замещения к 2-амино-б-метилпиримидину, хотя метил и должен ослабить электрофильность пиримидинового ядра. В метилпиримидинах метильные группы 2, 4 и 6 вступают в реакции конденсации кротонового типа с альдегидами, как и метильные группы а- и у-метилпиридинов. 2-, 4- и 6-Хлорпиримидины обладают (подобно 2-, 4- и 6-хлорнитробензолам) реакционноспособным галоидом, который не только замещается в результате нуклеофильных атак, но и вступает в реакцию Фриделя — Крафтса с ароматическими углеводородами. Оксипроизводиые пиримидина обладают более сильными кислотными свойствами, чем фенолы. Боковые алкильные группы гомологов пиримидина можно окислить в карбоксилы, не затрагивая пиримидинового цикла, очень устойчивого к окислению. Пиримидины, замещенные на ОН, ЫНг и другие активирующие группы, нитруются, нитрозируются и азосочетаются в положение 5 заместители, естественно, находятся в положениях 2, 4 или 6 и ориентируют в орто- и пара-положения по отношению к себе. Аминогруппа в положении 5 способна диазотиро-ваться, а аминогруппы в положениях 2, 4 и 6 на холоду не затрагиваются азотистой кислотой, а при легком подогревании замещаются на ОН. [c.317]

    Способность пиримидина к реакциям замеш,ения довольно мало изучена. Можно, однако, сказать, что в этом отношении он отличается от пиридина, как пиридин от бензола. Так, к электрофильным замещениям он способен еще меньше, чем пиридин, а если замещение происходит, то заместитель вступает в нолояадние 5 (Р-положение по отношению к обоим азотам). Действие амида натрия на 6-метилпиримидин приводит в результате нуклеофильного замещения к 2-амино-6-метилпиримидину, хотя метил и должен ослабить электрофильность пиримидинового ядра. В метилпиримидинах метильные группы 2, 4 и 6 вступают в реакции конденсации кротонового типа с альдегидами, как и метильные группы а- и 7-метилпиридинов. 2-,4- и 6-Хлорпиримидины обладают (подобно 2-, 4- и 6-хлорнитробензолам) реакционноспособным галоидом, который не только замещается в результате нуклеофильных атак, но и вступает в реакцию Фриделя — Крафтса с ароматическими углеводородами. Оксипроизводные пиримидина обладают более сильными кислотными свойствами, чем фенолы. Боковые алкильные группы гомологов пиримидина можно окислить в карбоксилы, не затрагивая пиримидинового цикла. [c.347]



Смотреть страницы где упоминается термин Натрий амид, действие на фенолы: [c.507]    [c.227]    [c.697]    [c.224]    [c.10]    [c.369]    [c.35]    [c.215]    [c.388]    [c.446]    [c.35]    [c.138]    [c.35]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.363 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Фенолят натрия



© 2025 chem21.info Реклама на сайте