Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицин метиловый эфир

    Метиловый эфир глицина. ............ [c.127]

    При титровании в водной среде глицина (П1) получаются две величины рКа одна составляет 2,2 (присоединение протона), вторая — 9,9 (отщепление протона) (все измерения проведены при 20°С). Величина рКа соответствующего метилового эфира составляет 7,7 (ионизация аминогруппы). Легко заметить, что рКа эфира гораздо ближе по величине к показателю второй константы глицина (9,9), Это дает основание отнести последнюю константу к ионизации аминогруппы глицина. Однако при этом обращает на себя внимание следующее обстоятельство рКа = 9,9 был получен при титровании глицина щелочью, а рКа = 7,7 был получен при титровании метилового эфира глицина кислотой, С точки зрения строгого критика, это обстоятельство делает только что проведенное сравнение констант недостаточно правомерным. Поэтому для большей строгости доказательства было проведено титрование солянокислой соли метилового эфира глицина щелочью и при этом был получен тот же результат, что и при титровании свободного метилового эфира кислотой. Отнесение величины рКа = 9,9 к равновесию (П1) (IV) подтверждается также данными, полученными при титровании в среде 50%-ного этанола. Оба значения рКа при переходе от воды к этанолу увеличиваются, составляя соответственно 2,7 и 10,0, В соответствии с данными, приведенными на стр 110, это свидетельствует о цвиттерионном строении гли- [c.111]


    Глицина метиловый эфир гидрохлорид см. Метиловый эфир глицина, гидрохлорид [c.134]

    Метиловый эфир глицина гидрохлорид [c.315]

    Глицин, метиловый эфир........ 53 60-63 0,86 0,91 9, 101 [c.348]

    Глицина метиловый эфир гидрохлорид МИХН. СООСНз-НС  [c.315]

    Эфиры а-аминокислот несколько легче вступают в реакцию автоконденсации, чем свободные кислоты. Действительно, этиловый эфир глицина в концентрированном водном растворе самопроизвольно образует ангидрид с выделением спирта [257]. Высшие гомологи требуют более жестких условий, и в общем методе, который широко используется, эфиры нагревают в запаянной трубке при 160—180° [258]. Выходы в общем хорошие, за исключением того случая, когда аминокислота содержит две алкильные группы у а-углеродного атома [259—261]. Скорость образования ангидрида наибольшая в случае метилового эфира и уменьшается по мере возрастания молекулярного веса эфирной группы [261, 262]. [c.354]

    При изучении кинетики гидролиза метилового эфира Ы-ацетил-глицина, катализируемого а-химотрипсином, наряду [c.88]

    Поскольку и /<2 известны (их значения при 25° С приведены в табл. 7.1), для вычисления всех четырех микроскопических констант нужно знать только одну из них. Предположим, что 2 имеет то же значение, что и константа диссоциации метилового эфира глицина, соответствующая реакции [c.217]

    Моноциклический продукт 21, образующийся под действием метилового эфира глицина на 20, после гидролиза дает аминокислоту 22. Последняя, в условиях восстановительной циклизации, переходит в имидазо[4,5-е]-1,4-диазепин 18 [15] (схема 5). [c.202]

    Гурд и др. [193] подтвердили такой механизм, установив, что (ГлиГли — СиОгН) катализирует гидролиз /г-нитрофенилацетата. Ли с сотр. [197] показал, что скорость гидролиза эфиров аминокислот возрастает при увеличении константы комнлексо-образования. Анализ спектров протонного магнитного резонанса эфиров аминокислот (этилового эфира глицина, метилового эфира оксипролнна и метилового эфира фенилаланина) позволяет сделать вывод, что металлы [С( (11) и Сп(П)] связываются как с аминогруппами, так и с эфирными карбонильными группами. В случае этилового эфира цистеина ионы металла образуют связи как с аминогруппами, так и с сульфгидрильными группами. В последнем случае константа скорости щелочного гидролиза комплекса кадмия с эфиром цистеина (1 1) в 11 раз больше скорости гидролиза эфира цистеина без образования комплекса. [c.129]

    Наиболее простой пример — бензоилироваиие метилового эфира глицина (в присутствии основания)  [c.52]


    Полиаминокислоты. — Данный раздел посвящен главным образом синтетическим полипептидам, полученным полимеризацией производных отдельных аминокислот (гомополимеры) или в некоторых случаях двух или более компонентов. Эфиры глицина и аланина были полимеризованы, но в настоящее время предпочитают использовать в качестве мономеров N-кapбoк иaнгидpиды, известные также КЗ К ангидриды Лейяса IV. Лейхс (1906) лолучил соединения этого типа взаимодействием аминокислоты I с метиловым эфиром хлоругольной кислоты. При этом образуется Ы-карбметоксиаминокислота П, из которой после превращения в хлорангидрид III при перегонке в вакууме образуется Ы-карбоксиангидрид IV и элиминируется молекула хлористого метила  [c.711]

    Можно было предполагать, что карбонильные группы пептндного состава, естественно, всегда присутствующие в молекуле пост-НТ могут иметь значение в обеспечении токсичности. Однако они малодоступны для участия в реакции взаимодействия с рецептором. В большей степени отвечают этому требованию карбонильные группы боковых цепей инвариантных аспарагиновой кислоты и аспарагина 67. Модификация аспарагиновой кислоты метиловым эфиром глицина приводит к потере активности на 75% от первоначального значения ( hang et al., 971 с). По мнению Karlsson (1973), если незаменимые карбонильные группы и существуют, то вероятнее всего они расположены в боковой цепи аспарагина 67. [c.70]

    Морфолоиы 20 и 23 легко подвергаются амииолизу при действии первичных и вторичных аминов с образованием соответствующих амидов 26. Аминолизом морфолонов 20 и 23 метиловым эфиром глицина были получены дипептиды 27 [29] (схема 14). [c.500]

    Гидролиз многих эфиров аминокислот катализируется ионами металлов [5]. Все эти сложные эфиры содержат функциональную группу, которая может служить лигандом для иона металла. Например, двухзарядные ионы кобальта, меди, марганца, кальция и магния эффективно катализируют гидрол1Из сложных эфиров а-аминокислот. В гл ициновом буферном растворе при pH 7,3 метиловый эфир глицина и этиловый эфир фенилаланина, в частности, легко гидролизуются под действием ионов меди (И). В ЭТ1ИХ условиях гидролиз подчиняется кинетике реакции первого порядка по субстрату. Константы скорости гидролиза этилового эфира па-фенилаланина, катализируемого ионами гидроксония, гидроксида и меди при pH 7,3, и 25 °С соответственно равны 1,46-10- (НзО+) 5,8-10 (ОН ) и 2,67-10 С [ u + (0,0775 М)] [6]. Хотя последнюю константу скорости, являющуюся составной величиной, нельзя непосредственно сравнивать с двумя первыми, высокая каталитическая [c.225]

    Водорастворимые карбодимиды использ. для модификации —СООН. Р-цию обычно проводят при pH 4,5 + 5 в присутствии амина, обычно метилового эфира глицина. —СООН-гр. под действием карбоднимида взаимодействует с добавленным амином, образуя амид. Карбодиимиды реагируют с близкими скоростями с —8Н и гораздо медл. с тирозиновым —ОН. Тирози-новые производные разл. при обработке 1 М КН ОН прн pH 7 —8Н-произ-водные гораздо более уст. СМС реагирует с остатком серина в активном центре сериновых протеаз. [c.326]

    Щелочной гидролиз морфолонов приводил к образованию а-амннокнслот 3 с выходом 64-89%, из которых легко получали амиды реакцией с первичными и вторичными аминами. Так конденсацией морфолона с метиловым эфиром глицина были получены дипептиды 4. [c.215]

    Шейнблатт изучал скорости обмена протонов амино-групп в водных растворах саркозина в виде катиона [81], (цвиттериона [ 82] и его метилового эфира [ 82], а также глицина и его метилового эфира [83]. Для всех соединений иопользовалась одна методика, которая основывалась на работах Грюнвальда с сот1р. [84] и Левенштейна и Мейбума [85], исследовавших протолиз ионов аммония. Времена жизни протонов аммонийной группы т и воды Тнао оценивались с помощью описанных выше способов 2 и 3. В методе 2 наблюдали сигнал а-протона, (представлявший со(бой квартет вследствие расщепления на протонах КНз-пруппы (рис. 13.13). Форма этого мультиплета в зависимости от состава [c.299]

    Глицин катион цвиттерион метиловый эфир Саркозин катион цвиттерисда метиловый эфир [c.301]

    Величина рКа уксусной кислоты составляет 4,8, однако ионизированная аминогруппа в цвиттерионе глицина является акцептором электронов и тем самым усиливает ионизацию карбоксильной группы. Количественно последнюю оиисываег рКа = 2,2, Метиловый эфир глицина благодаря индуктивному (—/) эффекту группы — СООСНз как - основание, в 1 ООО раз слабее, чем метиламин (рКа эфира составляет 7,7, рКа метиламина 10,7). Индуктивный эффект в молекуле эфира должен быть таким же, как и в нейтральной молекуле глицина (V . Незначительное количество последнего вещества существует в равновесии с цвиттерионом глицина (111) (этот вопрос будет обсуждаться позже). То, что индуктивные эффекты в (V) и в метиловом эфире одинаковы, следует из равенства дипольных моментов этих веществ. Увеличение показателя константы ионизации при переходе от метилового эфира глицина к самому глицину (9,9 вместо 7,7) свидетельствует о влиянии ионизированной карбоксильной группы на основность аминогруппы и является еще одним доказательством цвиттерионного строения глицина. Величина 9,9 — количественное выражение двух противоположных тенденций а) ослабляющего основные свойства индуктивного влияния карбоксильной группы и б) усиливающего основные свойства электронодонорного влияния аниона карбоксила, находящегося от аминогруппы достаточно близко, чтобы увеличивать ее электронную плотность. В результате, глицин оказывается всего в 6 раз менее основным (на 0,8 рК), чем метиламин [c.112]



Смотреть страницы где упоминается термин Глицин метиловый эфир: [c.640]    [c.683]    [c.683]    [c.351]    [c.136]    [c.154]    [c.640]    [c.273]    [c.733]    [c.180]    [c.192]    [c.204]    [c.231]    [c.247]    [c.258]    [c.262]    [c.287]    [c.293]    [c.508]    [c.411]    [c.427]    [c.637]    [c.1134]    [c.341]    [c.253]    [c.34]   
Синтетические гетероцепные полиамиды (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния



© 2025 chem21.info Реклама на сайте