Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенилаланин метиловый эфир

Рис. 44. Изменение свободной энергии фермент-субстратного взаимодействия по координате реакции (4.28) для химотриптического гидролиза метиловых эфиров Ы-аце-тил- -фенилаланина (сплошная линия) и Ы-ацетилглицина (пунктирная линия) [116]. (Для диаграммы использованы значения стандартных свободных энергий, полученные интерполяцией линейных зависимостей, приведенных на рис. 43). Рис. 44. <a href="/info/12282">Изменение свободной</a> <a href="/info/1377847">энергии фермент-субстратного взаимодействия</a> по <a href="/info/9220">координате реакции</a> (4.28) для химотриптического <a href="/info/604804">гидролиза метиловых эфиров</a> Ы-аце-тил- -фенилаланина (сплошная линия) и Ы-ацетилглицина (пунктирная линия) [116]. (Для диаграммы использованы <a href="/info/1498297">значения стандартных свободных энергий</a>, полученные <a href="/info/135102">интерполяцией линейных</a> зависимостей, приведенных на рис. 43).

Рис. 64. Предстационарная кинетика гидролиза метилового эфира N-ацетил L-фенилаланина, исследованная методом остановленной струи [9] Рис. 64. <a href="/info/1320755">Предстационарная кинетика</a> <a href="/info/604804">гидролиза метилового эфира</a> N-ацетил L-фенилаланина, <a href="/info/3781">исследованная методом</a> остановленной струи [9]
Рис. 77. Влияние дополнительного нуклеофильного агента, метанола, на кинетику гидролиза метилового эфира М-ацетил-Ь-фенилаланина, катализируемого трипсином. Концентрации метанола а —0 б — Рис. 77. <a href="/info/1548844">Влияние дополнительного</a> <a href="/info/101801">нуклеофильного агента</a>, метанола, на кинетику <a href="/info/604804">гидролиза метилового эфира</a> М-ацетил-Ь-фенилаланина, катализируемого трипсином. Концентрации метанола а —0 б —
    Не менее важными направлениями исследований являются иммобилизация клеток и создание методами генотехники (генного инженерного конструирования) промышленных штаммов микроорганизмов —продуцентов витаминов и незаменимых аминокислот. В качестве примера медицинского применения достггжений биотехнологии можно привести иммобилизацию клеток щитовидной железы для определения тиреотропного гормона в биологических жидкостях или тканевых экстрактах. На очереди-создание биотехнологического способа получения некалорийных сластей, т.е. пищевых заменителей сахара, которые могут создавать ощущение сладости, не будучи высококалорийными. Одно из подобных перспективных веществ —аспартам, который представляет собой метиловый эфир дипептида—аспартилфенилаланина (см. ранее). Аспартам почти в 300 раз слаще сахара, безвреден и в организме расщепляется на естественно встречающиеся свободные аминокислоты аспарагиновую кислоту (аспар-тат) и фенилаланин. Аспартам, несомненно, найдет широкое применение [c.164]

    Метиловый эфир (+, —)-фенилаланина 4 6 154 185 9 1-(Диметиламино)-1-гекса- 21 51 [c.39]

    Удивительное свойство бифенильного модельного соединения состоит в том, что в растворе оно существует в двух медленно взаимоиревращающихся формах, в которых эфирная группа занимает либо внешнее (экваториальное), либо внутреннее (аксиальное) положение относительно бифенильной системы. а-Химотрипсин проявляет суи ествепиую специфичность к 5,5экв-конформеру, тогда как остальные конформеры существенно инертнее к ферменту. Скорость гидролиза и константа Михаэлиса для активного кон-формера фактически идентичны аналогичным величинам соответствующего нормального субстрата — метилового эфира М-бензоил-фенилаланина. [c.235]


    Фенилаланин, метиловый эфир..... 65 79—81 0,87 0,91 101  [c.348]

    Этот фермент действует весьма избирательно по отношению к структуре молекулы субстрата. В то время как константы скоростей щелочного гидролиза метиловых эфиров уксусной кислоты и Ы-ацетил-1-фенилаланина различаются весьма слабо (не более чем на порядок), ферментативный гидролиз аминокислотного субстрата протекает по крайней мере в 10 раз быстрее (см. табл. 24). [c.127]

    Взаимодействие различных нуклеофилов с метиловым эфиром N-ацетил- -фенилаланина [129] [c.162]

    Метиловый эфир Ы-аце-тил-1-фенилаланина Щелочной гидролиз 1,9 [c.165]

    В таблице 3 приведена температурная зависимость константы скорости щелочного гидролиза метилового эфира Ы-аце-тил-Ь-фенилаланина [c.68]

    Определить значения кинетических параметров гидролиза метилового эфира Ы-ацетил-Ь-аланил-Ь-фенилаланина, катализируемого а-химотрипсином [7], исходя из данных табл. 4. [c.87]

    Метиловый эфир фенилаланина и -с-н-сн-с0,снз о сн с н Карбоновые кислоты 84 [c.66]

Рис. 7.13. Структура оптически активного краун-эфира, использованного для разделения энантиомеров, (а) и хроматограмма хлоргидрата метилового эфира фенилаланина (6) [107] (с разрешения изд-ва). Рис. 7.13. <a href="/info/1764710">Структура оптически активного</a> <a href="/info/25177">краун-эфира</a>, использованного для <a href="/info/108332">разделения энантиомеров</a>, (а) и хроматограмма хлоргидрата метилового эфира фенилаланина (6) [107] (с разрешения изд-ва).
    В 1962 г. Лосс и сотр. [22] сообщили о результатах разделения метиловых эфиров К-формилпроизводных следующих аминокислот аланина, валина, лейцина, пролина, глутаминовой кислоты, метионина, фенилаланина. Метиловые эфиры были получены метилированием диазометаном соответствующих К-формил-аминокислот и разделены при 194° С на высоковакуумной смазке [23]. Выход производных составлял 95,8—99,2%. [c.13]

    Один из возможных путей для получения ответа на поставленные вопросы, вероятно, состоит в использовапии простых модельных субстратов фермента а-химотрипсипа. С этой целью Хейн и Ниман [101] впервые попытались выяснить конформацию некоторых субстратов, присоедипенных к а-химотрипсину, используя молекулы с фиксированной конформацией, для моделирования конформации, которую принимает в активном центре типичный ациклический субстрат метиловый эфир Н-ацетил-ь-фенилаланина (ь-АРМЕ). Для этого Ниман изучал кинетические свойства о- и ь-1-кето-3-карбометокси-1,2,3,4-тетрагидроизохинолина (КСТ1). Это [c.233]

    Однако в 1968 г. Белло и Шевалье синтезировали из дифенового ангидрида уникальный фиксированный субстрат 3-метоксикарбо-нил-2-дибензазоцинон-1 [106]. Это бифенильное соединение с 2,2 -мостиком представляет собой аналог метилового эфира Ы-бензоил-фенилаланина (ВРМЕ). [c.235]

    Как видно из уравнения (4.50), характеристика реакционной способности нуклеофила, действующего в фермент-субстратном комплексе, зависит от природы сорбированного субстрата. В табл. 29 приведено значение/гц,Ез для.реакции ацилирования химотрипсина одним из наиболее специфических субстратов, производным фенилаланина. Интересно сравнить это значение с реакционной способностью алкоксильных ионов, поскольку головная группа ферментного нуклеофила — это алифатический гидроксил остатка 5ег-195, протон которого взаимодействует с имидазольной группой Н1з-57. Значение константы скорости реакции метилового эфира М-ацетил-1-фенилаланина с алкоксиль-ным ионом М-ацетилсеринамида [c.163]

    Совершенно другую картину имеем в случае специфического ацилфермента. Так, константа скорости ферментативного гидролиза (йз/55) одного из наиболее специфических соединений, Ы-ацетил-1-фенилала-нилхимотрипсина, практически совпадает с константой скорости для щелочного гидролиза метилового эфира Ы-ацетил-1-фенилаланина (см. табл. 30). Можно думать, что щелочной гидролиз более близкой к ацилферменту неферментативной модели, а именно 0-(Ы-ацетил-1-фе-нилаланил)-1 -ацетилсерннамида  [c.164]

    Особого внимания заслуживает вывод (см. стр. 163), справедливость которого не ограничена никаким допущением. Напомним, что он непосредственно следует из того, что в случае специфического субстрата (метилового эфира М-ацетил-1-фенилаланина) константы скорости щелочного гидролиза и катализируемого ферментом водного гид-ррлиза (на скоростьлимитирующей стадии, /гз/55) практически совпадают (табл. 30). Поэтому можно считать, что роль химотрипсина как катализатора реакции гидролиза сводится к сорбции на активном центре химически инертных фрагментов субстратной молекулы с последующим использованием сил. сорбции для следующих действий 1) поляризации молекулы воды, встроенной в активный центр ацилфермента настолько, что она полностью депротонирована 2) жесткому закреплению (ориентации) субстратного карбонила по отношению к атакующему нуклеофилу (образовавшемуся гидроксильному иону), чтобы эффективная концентрация последнего достигла предельного для воды значения —55М. 1 [c.166]

    Прямое кинетическое подтверждение образования промежуточных соединений и Х2 в катализе гидролиза эфиров N-aцилиpoвaнныx-L-аминокислот получено из анализа кинетики реакции на длинах волн поглощения промежуточных соединений ( 290 нм) [9]. Так, при смешивании раствора а-химртрипсина с метиловым эфиром Ы-ацетил-1-фенилаланина наблюдается быстрое (кинетически неразрешенное) спектральное изменение (по-видимому, образование первичного фермент-субстратного комплекса Х ), за которым следует медленная кинетика образования ацилфермента (рис. 64,а). В стационарной фазе реакции в условиях,, когда расходом субстрата можно пренебречь, концентрация ацилфермента сохраняется постоянной последующий расход субстрата приводит к- исчезновению в растворе промежуточных соединений (рис. 64,6) [9]. [c.198]


    Ряд олигомеров а-аминокислот играет значительную роль в жизнедеятельности организма и некоторые из них применяют в медицинской практике. Так, метиловый эфир дипептида L-аспарагил-Ь-фенилаланина (аспартат, аспартам) используют при диабете как малокалорийный заменитель сахара (в 150 раз слаще глюкозы). Его производят синтетическим или микробиологическим путем конденсацией аспарагина и метилата фенилаланина  [c.38]

    РИС. 13-7. Спектры поглощения N-ацпльных производных этиловых эфиров триптофана (/), тирозина (II), фенилаланина (III) и ди-метилового эфира цистина (/1 ) в метаноле при 25 °С, соответствующие переходам указанных соединений в первое электронно-возбужденное состояние. Спектры производных тирозина, фенилаланина и цистина умножены на коэффициенты 2, 20 и 4 соответственно [41]. [c.16]

    Эта ситуация показана на рис. 7.13. Закрепленный оптически активный краун-эфир (R, Я)-конфигурации выступает в роли хозяина , принимающего гостя — (8)-метиловый эфир фенилаланина (в виде гидрохлорида). Все три протона аммонийной группы образуют водородные связи с кислородными атомами краун-эфира. Конформационная подвижность в таком комплексе существенно ограничена, и (З)-энантиомер может принять в комплексе конформационно более предпочтительную форму. Отметим, что краун-эфир, несмотря на его кажущуюся симметрию, может существовать в четырех оптически активных формах, поскольку он получен из атропоизомеров бинафтола, который удалось разделить на энантиомеры вследствие затрудненности вращения. Приведенная структура получена из (К)-энантиомера. [c.141]

    Гидролиз многих эфиров аминокислот катализируется ионами металлов [5]. Все эти сложные эфиры содержат функциональную группу, которая может служить лигандом для иона металла. Например, двухзарядные ионы кобальта, меди, марганца, кальция и магния эффективно катализируют гидрол1Из сложных эфиров а-аминокислот. В гл ициновом буферном растворе при pH 7,3 метиловый эфир глицина и этиловый эфир фенилаланина, в частности, легко гидролизуются под действием ионов меди (И). В ЭТ1ИХ условиях гидролиз подчиняется кинетике реакции первого порядка по субстрату. Константы скорости гидролиза этилового эфира па-фенилаланина, катализируемого ионами гидроксония, гидроксида и меди при pH 7,3, и 25 °С соответственно равны 1,46-10- (НзО+) 5,8-10 (ОН ) и 2,67-10 С [ u + (0,0775 М)] [6]. Хотя последнюю константу скорости, являющуюся составной величиной, нельзя непосредственно сравнивать с двумя первыми, высокая каталитическая [c.225]

    Широкое применение, особенно в пищевой промышленности, в качестве заменителя сахара получил искусственный (генноинженерный синтез) дипептид, состоящий из Ь-изомеров аспарагиновой кислоты и метилового эфира фенилаланина, названный аспартамом  [c.77]


Смотреть страницы где упоминается термин Фенилаланин метиловый эфир: [c.21]    [c.351]    [c.354]    [c.354]    [c.233]    [c.351]    [c.652]    [c.834]    [c.136]    [c.149]    [c.185]    [c.188]    [c.247]    [c.287]    [c.209]    [c.94]    [c.663]    [c.67]    [c.68]    [c.384]    [c.300]   
Хроматографическое разделение энантиомеров (1991) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Фенилаланин

Фенилаланин Фенилаланин



© 2025 chem21.info Реклама на сайте