Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закон Ломмеля

Рис. 137. Выполнение закона Стокса — Ломмеля и правила зеркальной симметрии спектров поглощения (Я) и люминесценции (Л) у растворов родамина 6Ж в ацетоне Рис. 137. Выполнение <a href="/info/4738">закона Стокса</a> — <a href="/info/5857">Ломмеля</a> и <a href="/info/560339">правила зеркальной симметрии</a> <a href="/info/2753">спектров поглощения</a> (Я) и люминесценции (Л) у растворов родамина 6Ж в ацетоне

    Закон Стокса — Ломмеля. Стоксом было сформулировано правило, согласно которому спектр флуоресценции вещества всегда имеет большую длину волны, чем спектр поглощения. [c.91]

    Это положение выражено законом Стокса —Ломмеля, согласно которому спектр флуоресценции и его максимум всегда сдвинуты относительно спектра поглощения и его максимума в сторону длинных волн. Эго означает, что вещества, поглощающие ультрафиолетовый свет, могут флуоресцировать любым светом, но вещества, флуоресценция которых возбуждается, например, синим светом, не могут светиться лиловым, а только зеленым, желтым, красным, словом, расположенным в более длинноволновой части спектра (рис. 90). Установлено зеркальное подобие спектров поглощения и излучения для довольно обширного ряда веществ (правило Левшина). Однако следует отметить, что зеркальная симметрия спектров поглощения и излучения проявляется для сложных молекул и отсутствует для простых молекул, что связано, по всей вероятности, со значительными внутримолекулярными взаимодействиями сложных молекул. Расстояние между максимумом спектра поглощения и максимумом спектра люминесценции называется стоксовым смешением. Люминесцирующие вещества характеризуются величиной стоксова смещения. Чем оно больше, тем более надежно определение вещества люминесцентным методом. [c.144]

    Основой для построения схемы, изображенной на рис. 14.4.74, послужили следующие правила и законы молекулярной люминесценции правило Каши, закон Стокса—Ломмеля, правило Левшина, закон Вавилова. [c.503]

    Ломмель уточнил правило Стокса, предложив для него следующую формулировку Спектр излучения в целом и его максимум всегда сдвинуты по сравнению со спектром поглощения и его максимумом в сторону длинных волн . Закон Стокса — Ломмеля строго выполняется для широкого круга флуоресцирующих веществ. [c.91]

    Закон Стокса—Ломмеля обуславливает взаимное расположение спектров люминесценции и поглощения и формулируется следующим образом спектр люминесценции в целом и его максимум сдвинут по сравнению со спектром поглощения и его максимумом в длинноволновую область. Это означает, что средняя энергия квантов люминесценции меньше средней энергии поглощенных квантов. Причина этого явления заключается в превращении части энергии поглощенных квантов в тепловую энергию  [c.504]


    Закон Вавилова уточняет закон Стокса—Ломмеля и предусматривает возможность возникновения люминесценции при возбуждении ее светом с большей длиной волны, чем свет люминесценции (антистоксовая область возбуждения). Данная возможность реализуется вследствие того, что молекулы до поглощения квантов света могут обладать значительным запасом колебательной энергии, которая, суммируясь с энергией поглощенных квантов, может приводить к излучению фотонов с большей энергией  [c.504]

    Регистрация люминесценции. Свечение анализируемого объекта равномерно распространяется во все стороны (закон Ломмеля). Для того чтобы максимально использовать излучаемый световой поток и направить его в приемник, применяют конденсорные линзы (4) (см. рис. 202). Если перед приемником находится спектральный прибор (6), максимальное использование потока люминесценции осуществляется при полном заполнении светом его коллиматора, что также достигается при помощи специальных осветительных схем (см. гл. 13, 65). [c.444]

    По закону Ломмеля свет люминесценции распределяется равномерно по всем направлениям. Поэтому для определения выхода свечения достаточно измерения интенсивности излучения в каком-нибудь одном произвольном направлении. Однако  [c.172]

    С. И. Вавилов [78] и А. Н. Севченко [469] обратили внимание на то, что закон Ломмеля нарушается, если свет люминесценции поляризован. [c.172]

    Указанные обстоятельства побудили Ломмеля придать закону Стокса более гибкую формулировку, утверждавшую, что максимум спектра излучения всегда сдвинут в более длинноволновую область, по сравнению с максимумом поглощения. Такая формулировка получила название правила Стокса — Ломмеля. [c.14]

    Такие несоответствия казалось бы делают применение и закона Стокса, и правила Стокса — Ломмеля весьма сомнительными и, как сказал С. И. Вавилов, ...отно- [c.14]

    Длины волн спектра флуоресценции больше, чем спектра поглощения. Переход электронов с нормального уровня на возбужденный и обратно может происходить и с других подуровней, в результате получается широкий бесструктурный спектр флуоресценции, смещенный относительно спектра поглощения в сторону более длинных волн. Согласно закону Стокса — Ломмеля, спектр флуоресценции и его максимум всегда сдвинуты относительно спектра поглощения и его максимума в сторону длинных Волн. Это означает, что вещества, поглощающие ультрафиолетовый свет, могут флуоресцировать любым светом, но вещества, флуоресценция ко- [c.60]

    Если закон Стокса имеет смысл только при рассмотрении элементарных актов поглощения и испускания, то правило Стокса — Ломмеля носит статистический характер, причем безотносительно к возбуждающей частоте. Именно благодаря статистической сущности правило Стокса — Ломмеля носит более универсальный характер. [c.15]

    Несмотря на то, что вероятность антистоксового излучения достаточно велика, все-таки она всегда меньше, чем вероятность нормального (стоксового) излучения. А коль скоро это так, то можно утверждать (а это действительно и наблюдается на практике), что выход люминесценции в антистоксовой области всегда значительно меньше, чем в нормальной, стоксовой области. И закон Стокса, и правило Стокса — Ломмеля могут быть интерпретированы как частные случаи более общего спектрально-фотометрического закона, устанавливающего связь между выходом люминесценции и длиной волны возбуждающего света, — закона Вавилова. [c.15]

    Закон Стокса—Ломмеля применим в общем случае и для свечения кристаллофосфоров. Однако для последних характерно значительное разделение полос поглощения и излучения, а случаи перекрывания их довольно редки. [c.511]

    Вторая формулировка закона С. И. Вавилова гласит Фотолюминесценция может сохранять постоянный квантовый выход, если возбуждающая волна преобразуется в среднем в более длинную, чем она сама. Наоборот, выход люминесценции резко уменьшается при обратном превращении длинных волн в короткие . Этот закон С. И. Вавилова уточняет закон Стокса и, кроме того, конкретизирует и поясняет закон Стокса—Ломмеля , согласно которому спектр флуоресценции в целом и его максимум всегда сдвинут по сравнению с спектром поглощения и его максимумом в сторону длинных волн. [c.18]

    Закон Стокса—Ломмеля является качественным выражением правила зеркальной симметрии спектров поглощения и люминесценции Левшина, которое гласит спектры поглощения и люминесценции зеркально симметричны относительно прямой, проходящей перпендикулярно к оси частот (длин волн) через точку пересечения спектров. [c.211]

    Из рис. 5.1 видно, что между спектром поглощения вещества и его спектром флуоресценции можно ожидать определенного сходства, так как и тот и другой определяются, в сущности, одними и теми же электронными переходами. Сходство, действительно, есть, причем, как установлено законом Стокса — Ломмеля, спектр излучения в целом и его максимум всегда сдвинуты в сторону более длинных волн по сравнению со спектром поглощения и его максимумом. [c.107]

    Перенос электронов с нормального уровня на возбужденный и обратно может происходить и с других подуровней, в результате получается широкий бесструктурный спектр флуоресценции, смещенный также по сравнению со спектром поглощения в сторону более длинных волн. Это положение находит свое выражение в законе Стокса—Ломмеля, согласно которому спектр флуоресценции и его максимум всегда сдвинут по сравнению со спектром поглощения и его максимумом в сторону длинных волн. [c.13]


    С. И. Вавилова уточняет закон Стокса [11], утверждающий, что свет люминесценции имеет всегда большую длину волны, чем свет возбуждения. Кроме того, этот закон конкретизирует и поясняет закон Стокса — Ломмеля [12], согласно которому спектр флуоресценции в целом и его максимум всегда сдвинут, по сравнению со спектром поглощения и его максимумом, в сторону длинных волн. [c.11]

    Ее возникновение можно объяснить наличием у излучающих молекул помимо энергии возбуждения еще определенного запаса колебательной энергии. Сумма энергий возбуждающего и колебательного квантов позволяет получать большие кванты люминесценции, обусловливающие появление антистоксовской части спектра. Ломмель уточнил правило Стокса, предложив для него следующую формулировку спектр излучения в целом и его максимум всегда сдвинуты по сравнению со спектром поглощения и его максимумом в сторону длинных волн. Закон Стокса—Ломмеля строго вьшолняется для очень широкого круга веществ. [c.413]

    Спектр излучения в целом и его максимум всегда сдвинуты по сравнению со спектром поглощения и его максимумом в сторону длинных волн (закон Стокса — Ломмеля). [c.40]

    Закон Стокса-Ломмеля применим и для кристаллофосфоров. Это естественно, так как он вытекает из общих термодинамических соображений и квантового характера излучения. Однако непосредственной связи спектров поглощения и излучения у кристаллофосфоров не наблюдается. Их поглощательная способность связана главным образом с основным веществом, излучение же происходит на активаторе или вблизи него и определяется свойствами активатора., Спектр поглощения основного вещества почти всегда целиком лежит в ультрафиолетовой области спектра, излучение фосфора— в видимой части. Полосы поглощения нередко отделяются от полос излучения значительными спектральными интервалами. У отдельных фосфоров, наблюдается наложение длинноволновой части спектра поглощения на ко- [c.300]

    При выборе длины волны возбуждающего света следует иметь в виду, что, согласно закону Вавилова, квантовый выход люминесценции достаточно велик лишь в стоксовской части спектра, а в антистоксов-скои области он резко падает. Поэтому для получения интенсивного свечения необходимо, чтобы длина волны возбуждающего света была меньше длины волны максимума спектра люминесценции. Согласно закону Стокса—Ломмеля, это условие автоматически выполняется, если для возбуждения применять длины волн, лежащие в области максимума спектра поглощения. [c.442]

    Явное несоответствие правила Стокса в его первоначальной формулировке с опытными фактами заставило Ломмеля [331] дать этой закономерности другую формулировку, которая имеет ббльшую общность и может быть на- эвана законом Стокса-Ломмо1гя. Закон Стокса-Ломмеля состоит в утверждении, что спектр излучения в цепом и его максимум всегда сдвинут по сравнению со спектром поглощения и его максимумом в сторону длинных волн. Закон Стокса-Ломмеля почти всегда выполняется, что вполне понятно, если принять во внимание схему электронных переходов, соответствующих [c.95]

    Для спектров красителей хорошо выполняется закон Стокса-Ломмеля. Максимумы спектров излучения сдвинуты в сторону длинных волн по сравне-вию с максимумами спектров поглощения примерно на 1000 слг . Однако [c.266]

    Для успешного проведения анализа очень важно, чтобы лучи возбуждающего света не накладывались на свет люминесценции анализируемого объекта и не регистрировались приемником излучения. Согласно закону Стокса—Ломмеля, спектр люминесценции всегда сдвинут в сторону длинных волн по отношению к спектру поглощения. Поэтому для возбуждения люминесценции обычно используют ультрафиолетовую часть спектра. Однако все источники ультрафиолетовой радиации испускают также значительное количество видимых лучей, которые, отражаясь от поверхности исследуемого вещества, могут попадать в приемник излучения вместе с люминесценцией, заметно искажая его показания. [c.420]

    Физический смысл закона Стокса-Ломмеля глубоко отличен от смысла первоначального правила Стокса. Прежняя формулировка относилась к элементарному акту поглощения и утверждала, что за счёт поглощения лучей с большей длиной волны не может возникать излучение с меньшей длиной волны вторая же формулировка ничего не говорит об элементарном процессе и исключает из рассмотрения частоту света, применяемого в данном опыте для возбуждения последняя не играет роли, так как на основании закона постоянства спектров излучения нри любом возбуждении возникает один и тот же снектр. Закон Стокса-Ломмеля указывает на свойства системы молекул и имеет статистический характер максимум поглощения системы молекул сдвинут по отношению к максимуму их излучения в сторону коротких волн. [c.96]

    Эта формулировка закона С. И. Вавилова касается выхода люминесценции, но в то же время она заменяет и закон Стокса-Ломмеля о спектральном составе излучения, так как из неё вытекает, что в области постоянства квантового выхода спектр излучения должен быть сдвинут в сторону длинных волн относительно фактически поглощаемых лучей возбуждающего света но совокупность частот лучей, могущих вызывать люминесценцию, и определяет положение спектра активного поглощения, который, таким образом, должен быть сдвинут относительно спектра излучения в сторону коротких волн. Закон предусматривает также антистоксовское возбуждение. [c.152]

    Такой точки зрения придерживались также и некоторые физики, например Жамен, Беккерель и в особенности Ломмель [6, 7]. Последний указал, что основной принцип фотохимии, известный как закон Гершеля ( только поглощенный свет производит фотохимическое действие ), требует, чтобы спектральный максимум эффективности фотосинтеза совпадал с максимумом поглощения сенсибилизирующего пигмента. Тимирязев [4, 9], Мюллер [8], Энгельман [15] и Рейнке [17] дали экспериментальные доказательства существования такого. совпадения, показав, что эффективность фотосинтеза зеленых растений непрерывно уменьшается по спектру от красного, через желтый, к зеленому свету, параллельно с понижением поглощающей способности хлорофилла. Ошибку Дрэпера, Сакса и Пфеффера Тимирязев объяснил тем, что они применяли спектрально не чистый свет. Сам Тимирязев пользовался светом, изолированным при помощи монохроматора с узкой щелью, и, чтобы компенсировать малую интенсивность освещения, применял микроаналитические методы. Энгельман полагал, что эта ошибка могла явиться результатом работы с толстыми листьями или слоевищами, практически полностью поглощающими свет даже в минимуме между полосами поглощения хлорофилла. Он работал с микроскопическими растительными объектами, применяя подвижные бактерии для обнаружения и определения кислорода. [c.581]

    Термин флуоресценция был введен Стоксом (1852) для давно известного явления [68] — способности некоторых веществ светиться при обыкновенной гемператзфв под влиянием освещения и только во время освещения (способность светиться после освещения получила название фосфоресценции). Стокс сформулировал свой известный закон, согласно которому длина волны в спектре флуоресценции всегда больше длины волны поглощенного света. Ломмель (1871) на примере хлорофилла и некоторых других органических соединений показал, НТО закон Стокса имеет исключения. С начала 80-х годов химики начали изучать зависимость между способностью веществ к флуоресценции и их химическим строением. Р. Мейер (1897) связал эту способность с присутствием в молекулах особых групп — флуорофоров . Кауфман, автор монографии Флуоресценция и химическая конституция (1906), ввел понятие о группах — флуорогенах , способность которых к флуоресценции проявляется в присутствии других групп ауксохромов. Штарк (1907) открыл способность флуоресцировать при освещении ультрафиолетовыми лучами. Однако к этому времени стало ясно, что спектры флуоресценции для структурной органической химии менее перспективны, чем ультрафиолетовые спектры. Со всей определенностью это положение сформулировал Штарк Так как связь флуоресценции с коротковолновыми полосами поглощения может считаться надежно установленной и так как полосы поглощения легче обнаружить и измерить, чем полосы флуоресценции, представляется целесообразным вопрос о связи между положением полос флуоресценции и молекулярной конституцией заменить вопросом о связи менаду спектрами поглощения и конституцией [69, с. 223]. За 50 лет положение мало изменилось. Спектры флуоресценции, несмотря на их успешное применение в отдельных случаях (о чем будет упомянуто далее), не стали таким же мощным средством исследования в аналитической органической химии, как другие методы, рассмотренные [c.241]

    Правило Стокса — Ломмеля. Одна из важных закономерностей, устанавливающая взаимосвязь между спектрами поглощения и люминесценции, была сформулирована в середине XIX века Дж. Г. Стоксом люминесцентное свечение находится в более длинноволновой области, чем поглощеииый свет. Проверка этой закономерности показала, что случаев нарушения закона больше, чем случаев подчинения ему. Это побудило Э. Ломмеля придать закону Стокса более гибкую формулировку, утверждавшую, что максимум спектра излучения всегда сдвинут в более длинноволновую область по сравнению с максимумом поглощения. Такая формулировка получила название правила Стокса — Ломмеля. [c.51]

    Величина фэи зависит от длины волны возбуждающего излу чения (закон Вавилова). Однако спектр люминесценции слож ных молекул в конденсированной фазе не зависит от длинь волны возбуждающего излучения, потому что излучение кван тов флуоресценции осуществляется только с одного уровня (5l >, см. рис. 1.32). Так как наблюдается одновременное и не зависимое друг от друга свечение очень большого числа моле кул, суммарное излучение некогерентно. Энергия излученных квантов меньше энергии поглощенных, поэтому максимум спектра флуоресценции сдвинут в сторону длинных волн по отношению к максимуму спектра поглощения этого же соединения (правило Стекса — Ломмеля). [c.95]

    Первая особенность Vпoгл>Vф.л — получила название з акона Стокса — Ломмеля, а длинноволновое (красное) смещение полосы испускания относительно поглощаемой частоты названо стоксовым. Иногда этот закон нарушается и наблюдают ком--поненты полосы фотолюминесценции со стороны более высоких частот (меньших длин волн) относительно частоты О—О-полосы поглощения, называемые антистоксовыми.  [c.345]

    Закон Стокса—Ломмеля. Стоксом было сформулировано правило, согласно которому свет люминесценции всегда имеет ббльшую длину волны по сравнению со светом, применявшимся для возбуждения. Однако во многих случаях правило Стокса не вьшолняется. Спектры поглощения и люминесценции многих веществ частично накладываются друг на друга (рис. 187). Если для возбуждения взять частоту (например, v = 530- 10 e/ ), находящуюся в области наложения спектров, то согласно правилу Стокса должна появляться лишь та часть спектра люминесценции, которая расположена по левую сторону от выбранной частоты. Однако в соответствии с законом независимости спектра люминесценции от Явозб в большинстве случаев наблюдается полный спектр люминесценции, имеющий целый ряд частот, превышающих частоту возбуждающего света (заштрихованная область). Таким об-разом, правило Стокса нарушается. [c.413]


Смотреть страницы где упоминается термин Закон Ломмеля: [c.11]   
Фотолюминесценция жидких и твердых веществ (1951) -- [ c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Ломмель



© 2024 chem21.info Реклама на сайте