Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерение интенсивности

    Турбидиметрия основана на измерении интенсивности светового потока, прощедшего через дисперсную систему I. Если принять рассеянный свет за фиктивно поглощенный, то можно получить соотношение, аналогичное закону Бугера—Ламберта—Бера (1.17) для поглощения света растворами [c.89]

    Флуориметрический метод анализа основан на возбуждении электронных спектров испускания молекул определяемого вещества при внешнем УФ-облучении и измерении интенсивности нх фотолюминесценции. Для возникновения явления люминесценции молекулы вещества необходимо перевести из основного состояния в возбужденное с длительностью его существования, достаточной для осуществления излучательного электронного перехода из возбужденного состояния в основное. Это возможно для молекул с относительно устойчивым возбужденным состоянием. [c.94]


    Уточнения полученных данных по ванадию и никелю было осуществлено другим способом - методом атомно-абсорбционного анализа. Он состоит в измерении интенсивности резонансного поглощения аналитической линии ванадия, испускаемой лампой с полым катодом, при ее прохождении через графитовую кювету графитовой печи, в которой атомизируются соединения пробы нефтепродукта. [c.33]

    Нефелометрия основана на измерении интенсивности света, рассеянного дисперсной системой /р. Способность частиц к рассеянию или отражению света определяется размером частиц и длиной волны падающего света. Интенсивность светового потока, рассеиваемого дисперсными частицами, определяется уравнением Рэлея [c.89]

    Наряду с качественными и количественными методами определения механических примесей существуют методы определения ситового состава частиц. Один из них [156] основан на применении анализатора — электронного счетчика частиц. Прибор автоматически регистрирует сотни тысяч частиц размером более 1 мкм. Для классификации загрязнений по размерам частиц образец топлива прокачивают через счетчик несколько раз. Общая длительность анализа 1 ч. Дисперсионный состав можно определить также с помощью установки, основанной на измерении интенсивности свечения конуса Тиндаля, которая находится в прямой зависимости от степени дисперсности микрозагрязнений [157]. Для автоматического контроля дисперсионного состава твердых микрочастиц разработана ультразвуковая установка [158]. С помощью электронного счетчика подсчитывается и автоматически записывается число изображений микрочастиц определенно-,го размера. Установка может определять дисперсионный состав т вердых загрязнений в статических и динамических условиях. Перед работой установку калибруют. [c.177]

    Ю. П. Розин и Н. П, Тихонова (Одесский Государственный университет) модифицировали прибор Ричардса с целью измерения интенсивности звука в проводящих жидкостях. Используя известный метод измерения поверхностного натяжения, предложенный Ребиндером, они разработали компенсационный метод измерения интенсивности звука. В пузырьках, образуемых в акустическом поле, максимальное давление воздуха много выше, чем в отсутствие поля. При увеличении интенсивности звука форма мениска становилась более плоской. По мнению авторов, это эквивалентно действию постоянного давления, направленного внутрь капилляра и не зависящего от угла наклона капилляра относительно звукового фронта. [c.128]


    После выбора аналитических спектральных полос для компонентов смеси производится калибровка при помощи измерения интенсивности поглощения всех компонентов на выбранных длинах волн. Интенсивность обычно измеряется удельным поглощением. Для удобства мсжно измерять интенсивность каким-либо другим образом, причем это зависит от того, в каких единицах желательно полу шть результат. Так, если анализируются образцы паров, концентрация будет выражаться в единицах давления, а результаты будут выражены в молярных процентах. Для жидкостей можно выбрать единицы, дающие результаты прямо либо в весовых процентах, либо в процентах по объему жидкости. Весьма желательно исследовать выполнимость закона Бэра путем построения графика зависимости поглощения от концентрации главного компонента смеси для каждой полосы поглощения. Описаны методы [5], по которым, если это необходимо, можно ввести поправку на нелинейность. [c.318]

    Такой тип среднего получают при использовании метода светорассеяния-измерения интенсивности света, рассеянного разбавленными растворами полимеров [2—4]. [c.22]

    Композиционная неоднородность, помимо применения различных способов фракционирования в системах, чувствительных к изменению состава [16], может быть исследована с помощью ряда физических методов. Так, для сополимеров, компоненты которых различаются по своим физическим характеристикам (показателю преломления, плотности, спектрам поглощения) были предложены следующие методы измерения интенсивности рассеянного света в растворителях с различным показателем преломления [3] скоростной седиментации с одновременной регистрацией в ультрафиолетовой и видимой областях спектра [31] плотности [27]. [c.29]

    Для измерения интенсивности детонации наибольшее распространение получили методы, основанные на измерении температур и давлений. Измерение температуры последней порции заряда оказалось довольно сложным и мало пригодным способом оценки детонации. Практическое применение получил метод измерения средней температуры стенок камер сгорания, на базе которого разработан так называемый температурный метод оценки детонационной стойкости авиационных бензинов. [c.90]

    Производя измерения интенсивности полос поглощения О2, отвечающих и = 6, в различные моменты времени после прекраш,епия облучения смесей СЮ2 или N0 с азотом, а также в присутствии СО2 и а )гона, Норриш с сотр. [386] показал, что из этих данных могут быть вычислены эффективности превращения колебательного кванта молекулы О при столкновении их с другими молекулами. [c.86]

    Наряду с обменом колебательной, вращательной в поступательной эпергии при столкновениях молекул, находящихся в основном электронном состоянии, значительный интерес представляет обмен энергии электронновозбужденных молекул. Практически единственным экспериментальным методом определения вероятности или констант скорости этих процессов является оптический метод, основанный на измерениях интенсивности электронных спектров испускания (флуоресценции). [c.100]

    Измерения интенсивности флуоресценции нри различных давлениях постороннего газа позволяют определить среднее количество колебательной энергии Е, теряемой возбужденной молекулой при столкновении с молекулой постороннего газа. Полученные таким путем значения величины Е для различных газов и различной степени колебательного возбуждения флуоресцирующих молекул р-нафтиламина составляют от десятых долей до нескольких килокалорий. [c.102]

    Определение концентрации вещества. Получив спектр ЯМР, можно определить концентрацию вещества в растворе по измерению интенсивностей пиков. Интенсивность линии в спектре ЯМР пропорциональна количеству протонов, обусловливающих появление данной линии. Следовательно, сравнивая площади пиков поглощения, можно сказать о количестве ядер в какой-либо группировке, что также часто помогает при расшифровке структуры молекул. [c.263]

    Определение элементов в атомно-абсорбционном методе заключается в измерении относительной интенсивности двух световых потоков. Один из них проходит через плазму с введенным в нее анализируемым веществом, другой является контрольным. Окончательный аналитический сигнал может быть получен двумя способами. Последовательное во времени измерение интенсивности одного светового потока, прошедшего через поглощающий слой без анализируемого вещества и затем измерение интенсивности светового потока, прошедшего через пламя с анализируемым веществом, проводят, используя однолучевые при- [c.49]

    Локальный обогрев. В 36, 37] экспериментально и численными методами исследовалось влияние локального нагрева с помощью горизонтальной полосы на одной из вертикальных стенок прямоугольного канала. Результаты измерений интенсивности теплоотдачи в основном находились в соответствии с расчетами, но не обладали достаточной точностью для того, чтобы стать критическим тестом. Тем не менее наблюдаемые и рассчитанные картины течения (развития) конвекции находятся в хорошем согласии (рис. 18). Влияние на теплоотдачу размера и положения нагревателя показано на рнс. 19 и 20. Оптимальное положение нагревающей полосы для обеспечения максимального [c.304]


    На практике при измерении интенсивности звука, звукового давления и звуковой мощности для удобства пользуются не абсолютной, а относительной, логарифмической шкалой — шкалой децибел. Децибел определяется как десятикратное значение логарифма отношения двух одноименных физических величин, одна из которых принята за опорную. [c.511]

    Измерение интенсивности света. Определение интенсивности света, используемого при проведении фотохимических реакций, возможно при помощи термоэлементов, фотоэлементов и химических актинометров. [c.143]

    Нефелометрически метод исследования основан на измерении интенсивности света, рассеянного дисперсной системой. Более высокая чувствительность и точность этого метода по сравнению о достигаемой в турбидиметрии позволяют определить не только концентрацию и размер частиц в золях, но и форму частиц, меж-частичные взаимодействия и другие свойства дисперсных систем, В основе нефелометрии лежит уравнение Рэлея (V. 9), Если необходимо определить только размер частиц и их концентрацию, то достаточно измерить интенсивность рассеянного света под одним углом, II поэтому уравнение Рэлея можно представить в следующем виде  [c.263]

    По [38] для измерения интенсивности ультразвуковых волн в жидкостях, твердых телах применяются термические приемники ультразвуковых волн, действие которых основано на преобразовании энергии ультразвуковой волны в тепловую в результате ее поглощения. Они также могут применяться для измерения интенсивности ультразвука в газах, гю со значительно меньшей точностью. [c.77]

    Турбидиметрия основана на измерении интенсивности проходяидего через дисперсную систему света. Рассеянный свет можно считать фиктивно поглощенным, и поэтому есть все основания принять, что закономерности рассеяния света подчиняются уравнению Бугера — Ламберта — Бера  [c.112]

    Ж. Фотохимические методы. КвантовыЁ выход. Закон фотохимической эквивалентности Эйнштейна гласит, что свет поглощается молекулами отдельными порциями, причем одна молекула может поглотить в один акт только один квант. Путем измерения интенсивности света и длины волны можно количественно определить число фотонов света, поглощенных на протяжении реакции. Данные анализа продуктов такой реакции позволяют вычислить [c.100]

    В этом разделе описаны некоторые факторы, влияющие на из.неряе-мую интенсивность отраженных пучков, а также математическая процедура, используемая для расчета интенсивности любого отражения на основе данных о содержимом элементарной ячейки. Мы увидим, что измерение интенсивности само по себе не может дать достаточной информации для прямого расчета положения атомов, и поэтому должен использоваться итерационный метод, в котором сравниваются измеренные и рассчитанные интенсивности и применяемая атомная. модель улучшается до тех пор, пока не будет достигнуто адекватное соответствие двух наборов величин. [c.390]

    Часто перед окном фотоэлемента помещают раствор вещества (эритрозин, сульфородамин, родамин и т. п.), сохраняющего квантовый выход флуоресценции в широком интервале длин волн. Для измерения интенсивности света удобными оказываются химические актинометры. При использовании химических актинометров интенсивность света источника определяется по химическому действию излучения на вещество с заранее известным квантовым выходом. [c.145]

    Шюгерль полагает, что продольное перемешивание определяется поперечной неравномерностью скоростей потока. Расчеты показали что измеренная интенсивность радиального перемешивания больше, чем соответствующая простой диффузионной прямоточной модели. В этом случае вряд ли правомерно определять скорости обмена газом по измеренному распределению времени пребывания, интерпретируя данные в соответствии с простой двухфазной прямоточной моделью. Аналогичное замечание может быть также, видимо, сделано относительно модели противотока с обратным перемешиванием. [c.303]

    Измерение абсолютных концентраций при помощи метода резонансной флуоресценции тр( бует знания вероятности возбуждения изучаемых частиц, тушения их флуоресценции и радиационного времени жизни т. Измерение интенсивности резонансной флюоресценции нри известном т позволяет определить концентрацию возбужденных частиц, которая всегда значительно меньше концентра 1,ин мевозбужденных частиц. Нахождение же числа последних, представляюп1 пх основной интерес с точки зрения кинетики и механизма изучаемой реакции, требует донолиительпых исследований. В самом общем случае между концентрацией возбужденных п и невозбужденных п молекул данного вещества существует соотношение [c.25]

    Одним из эмиссионных спектральных методов, получивших применение, является метод определения концентрации атомов кислорода, основанный на измерении интенсивности спектра, испускаемого в процессе О + N0 — —NO2 + hv. На осповапии данных ряда авторои константа скорости этого процесса может быть представлена форм лой [67] к = 7,9-.10-12 J-2 сж -сек . [c.26]

    Определение меди. Содержание меди определяют фотометрическим методом, основанным на измерении интенсивности окраски аммиачного комплексного соединения ["Си (ЫНз)4] имеющего максимум поглощения в области длин волн л = б20нм. [c.232]

    Определение марганца. Определение марганца фотометрическим методом основано на измерении интенсивности окраски ионов Мп04 ( 1макс = 525 нм), образующихся при окислении Мп-+ персульфатом аммония в присутствии ионов серебра, оказывающих каталитическое действие  [c.236]

    Установка ИТ9-2 снабжена специальной системой для измерения интенсивности детонации (см. рис. XXI. 1), состоящей из датчика детонации, теплового элемента, генератора посто [нного тока, указателя интенсивности детонацип. [c.616]

    Величина /о рассчитывается по измерению интенсивности флуоресценции раствора 4 при длине волны 355 нм, о — по измерению интенсивности флуоресценции раствора 5 при длине волны 430 нм. Так как недиссоциированная форма нафтола имеет довольно значительную интенсивность флуоресценции при 430 нм, то при измерении I следует вводить поправку Г = 1кзм где Г действительная интенсивность флуоресценции 2-нафтолят-иона при 430 нм /изи—интенсивность флуоресценции нафтолят-иона, полученная экспериментально А-—интенсивность флуоресценции [c.78]

    Кроме того, для измерения интенсивности света может быть использована реакция разложения щавелевой кислоты, которая сенсибилизирована уранил-иояом. Реакция протекает в интервале 208—435 им, квантовые выходы практически не зависят от темпе-затуры, концентрации реагентов и интенсивности падающего света, асход оксалат-иона определяется титрованием эквивалентных количеств облученного и необлученного растворов актинометра перманганатом калия. Для получения достаточно хорошей точности определения необходимо использовать продолжительные экспозиции. [c.148]

    Измерение интенсивности поглощения позволяет не только рас-1пифровать спектр, но и следить за изменением концентрации того или иного вещества в ходе химической реакции. [c.263]


Смотреть страницы где упоминается термин Измерение интенсивности: [c.34]    [c.178]    [c.91]    [c.202]    [c.396]    [c.302]    [c.201]    [c.201]    [c.314]    [c.314]    [c.324]    [c.324]    [c.327]    [c.78]    [c.50]    [c.101]    [c.67]    [c.124]   
Смотреть главы в:

Каталитические, фотохимические и электролитические реакции -> Измерение интенсивности

Методы фотохимического синтеза органических веществ -> Измерение интенсивности




ПОИСК







© 2025 chem21.info Реклама на сайте