Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярные эффекты спиртов с олефинами

    Влияние растворителей на присоединение бромистого водорода к непредельным соединениям в более ранних исследованиях перекисного эффекта послужило предметом длительных споров. В настоящее время положение стало достаточно ясным, поскольку общепризнано, что в случае большинства систем существует конкуренция между ионным и свободнорадикальным присоединением. Свободнорадикальное присоединение мало чувствительно к полярности растворителя, однако в случае ионного присоединения дело обстоит совсем иначе. Поэтому при применении неполярного растворителя (например, пентана) уменьшается скорость ионного присоединения, что способствует образованию продукта реакции радикального присоединения. Действительно, в случае таких реакционноспособных (к ионному присоединению) олефинов, как стирол и триметилэтилен, для успешного осуществления радикальной реакции присоединения необходимо работать с сильно разбавленными растворами и в неполярной среде. Радикальное присоединение легко осуществить во многих растворителях — это показывает, что ингибирующими свойствами растворителей обычно можно пренебречь. При работе с растворителями, имеющими лабильные атомы водорода (т. е. с растворителями, легко вступающими в свободнорадикальные реакции), наблюдается ингибирование реакции, и этот эффект, по-видимому, возрастает с повышением температуры. В присутствии перекисей радикальное присоединение к триметилэтилену не происходит при температуре выше 20° в этиловом спирте или выше 0° в метаноле [62]. Присо- [c.181]


    Другой фактор, который оказывает большое влияние на скорости как свободнорадикального замещения, так и присоединения, имеет, по-видимому, полярную природу радикалы с сильно электроноакцепторными группами обладают повышенной реакционной способностью по отношению к веществам, которые имеют электронодонорные группы, и наоборот. Природа этого полярного эффекта явилась предметом дискуссий и, по-видимому, изменяется от простого диполярного взаимодействия до (в предельных случаях) снижения энергии переходного состояния в результате вклада структур с переносом заряда. Мы можем отметить, что радикалы с электроноакцепторными группами, которые имеют соответствующие отрицательные ионы умеренной стабильности, присоединяются особенно легко к олефинам, легко отдающим электроны, тогда как радикалы, соответствующие устойчивым ионам карбония, хорошо присоединяются к олефинам, имеющим электроноакцепторные группы. Так, полигалогенметаны легко реагируют с углеводородами, виниловыми эфирами и т. п., тогда как альдегиды и спирты (присоединяющиеся в виде КСНОН — Н) обычно дают хорошие выходы аддуктов с перфторолефинами и а,Р-непредельнымн карбонильными соединениями, такими, как эфиры малеиновой кислоты. [c.110]

    Аналогично, другой традиционно используемый катализатор - серная кислота -проявляет каталитические свойства как комплексно-связанное соединение, например на сульфатах металлов [109, 110], так и в виде ковалентно присоединенных к матрице сульфогрупп, т.е. полимерных сульфокислот [114-117]. В обоих случаях чем больше количество связанной кислоты (80зН-групп) и чем сильнее ее связь с матрицей, тем выше кислотно-каталитическая активность. Обпще представления о характере действия таких катализаторов можно проиллюстрировать на примере сульфированных сополимеров стирола с дивинилбензолом. Как и для любой твердой матрицы, и в этом случае существенную роль играет проницаемость полимерной сетки, определяемая степенью сшивки, набухаемостью, размером гранул, а также другими факторами. Химическая сторона каталитического действия сульфока-тионитов связана с наличием сетки водородных связей, кооперативных эффектов и формированием ассоциатов - центров повышенной локальной концентрации кислотных групп [182,183]. Наличие остаточной воды обеспечивает необходимую подвижность протонов, динамический характер сетки и наблюдаемое в эксперименте соотношение активности и селективности действия. Встраивание субстрата в сетку предпочтительнее, чем простое взаимодействие его с поверхностью [184-186]. Учитывая низкую полярность олефинов, например изобутилена, можно предположить электрофильные превращения его в присутствии сульфокислот через промежуточное образование спирта и последующее встраивание в сетку матрицы. Ниже приведены возможные структурные элементы полимерных сульфокислот  [c.57]


    Льюис и Бузер [15] нашли, что термическое разложение вторичных алкил (2-бутил, 2-пентил и 2-октил) хлорсульфитов в разбавленных диоксановых растворах протекает по первому порядку, давая в качестве основных продуктов олефины и алкил-хлориды. Хлориды имели ту же конфигурацию, что и спирты, производными которых они являлись, и были только до некоторой степени рацемизованы. Скорость разложения была меньше в изооктановом растворителе или в отсутствие растворителя, но в этих случаях хлорид имел конфигурацию, противоположную конфигурации спирта. В диоксановом и изооктановом растворах реакция протекала по первому порядку. По-видимому, механизм означает реакцию первого порядка с сохранением конфигурации. Если реакция с сохранением конфигурации имеет место в изооктане, то, как отмечают Льюис и Бузер, ее скорость в этом растворителе много меньше, чем в диоксане. Уменьшение скорости при переходе к менее полярному растворителю (если это не обусловлено специфическим эффектом растворителя) означает, что переходное состояние имеет много больший дипольный момент, чем нормальный хлорсуль-фит, и что механизм, вероятно, включает четыре структуры переходного состояния, приведенные ниже  [c.199]

    Наибольший эффект увеличения скорости гидратации олефинов на катионообменных смолах достигается при введении в реакцию полярного органического растворителя [8]. Так, при гидратации 2-метил-1-пен-тепа на катионите КУ-1 при мольном отиощении воды, олефина и растворителя (изопропилового спирта) 1 1 1,5, температуре 80- 100° и вре.мени контакта 1 час конверсия изогексенов в спирт составляет 18- 25% и ограничена условиями термодинамического равновесия [9]. [c.3]

    Аналогичная картпна наблюдается и для смесей дихлорэтана, ацетона, метилэтилкетона и другпх растворителей с бензолом и толуолом. Увеличение длины углеводородного радикала в молекулах растворителей, например в кетонах, позволяет достичь такого же эффекта, т. е. полной растворимости углеводородов масла при низких температурах, при которых твердые углеводороды растворяются крайне незначительно. В этом случае увеличение длины углеводородного радикала кетона, повышая его дисперсионный эффект, заменяет добавление бензола пли толуола к таким кетонам, как ацетон или МЭК. Добавление примесей к неполярным растворителям, в частности к сжиженному пропану, в ряде случаев резко сказывается на растворимости в нем углеводородов и смолистых веществ нефти. Н. Ф. Богданов делит примеси и добавки, которые могут присутствовать в пропане, на две группы. Одна группа веществ понижает растворяющую способность пропана. Сюда относятся, например, метан, этан и некоторые спирты. Вторая группа соединений повышает эту способность это бутан, пентан и другие высшие гомологи метана, олефины и полярные растворители, применяемые в переработке нефтяных фракций. [c.107]

    Присоединение формально идет против правила Марковникова, поскольку водородный атом идет не к более гидрогенизован-ному углероду. В действительности же правило Марковникова соблюдается, так как в роли электрофильного агента выступает атом бора, нуклеофилом же является водород, переходящий к олефину вместе со своими связующими электронами (т. е. в виде гидрид-аниона). В согласии со сказанным и с четырехзвённым переходным состоянием при присоединении В2ВС1 к стиролу или гек-сену наблюдается кинетический изотопный эффект от 1,8 до 2,4 [134]. Переходное состояние мало полярно, что следует из малой константы реакции для присоединения борана к замещенным в ядре стиролам (р = —0,7) [134]. В результате правило Марковникова в общем соблюдается (хотя и не полностью) у концевых олефинов [133], в случае стиролов оно действует ограниченно [135], а неконцевые олефины дают примерно равные количества продуктов присоединения по правилу и против правила Марковникова [133]. Возникшие при гидроборировании триалкил-бораны щелочной перекисью водорода могут быть окислены в спирты. Для этой реакции предполагают следующий механизм [136]  [c.476]

    В данном варианте ЖХ удерживание компонентов пробы обусловлено их адсорбцией на гидроксильных группах субстрата — силикагеля или оксида алюминия. Полярные молекулы удерживаются сильнее, чем неполярные, и обычно наблюдается следующий порядок элюирования [3] насыщенные углеводороды (небольшие й ) <олефины<ароматические углеводороды— органические галогениды<сульфиды<простые эфиры<нитросое-динения<сложные эфиры альдегиды кетоны < спирты амины< сульфоны< сульфоксиды< амиды< карбоновые кислоты (большие к ). (Символом к обозначен коэффициент емкости, см. гл. 19). Сила адсорбции обычно является характеристикой функциональных групп органических соединений, поэтому этот метод особенно полезен для разделения соединений различных классов. Могут сказываться и стерические эффекты, так что в ряде случаев можно осуществить разделение и геометрических изомеров, например цис и транс. [c.430]



Смотреть страницы где упоминается термин Полярные эффекты спиртов с олефинами: [c.728]    [c.181]    [c.3]   
Свободные радикалы в растворе (1960) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Полярные эффекты



© 2024 chem21.info Реклама на сайте