Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анизотропия оптическая формы и связи

    Наиболее хорошо сферолиты различимы при рассмотрении тонких пленок или срезов полимеров в оптическом микроскопе в поляризованном свете. Это связано с тем, что сферолитам присуща анизотропия оптических свойств из-за радиальной симметрии их строения. Поэтому показатели преломления света в радиальном и тангенциальном направлениях различны, и в поляризованном свете видны типичные для сферолитов картины двулучепре-ломления (см. рис. 3.12). Наблюдаемая картина объясняется тем, что ориентация кристаллографических осей в сферолите непрерывно меняется по угловой координате. Этому соответствует такое же непрерывное изменение показателей преломления по отношению к плоскости поляризации падающего света. Поэтому различные области сферолита по-разному пропускают поляризованный свет. Это приводит к возникновению светлой круговой двулуче-преломляющей области, пересеченной темной фигурой в форме мальтийского креста, плечи которого параллельны направлениям гашения падающего света. Такие сферолиты называют радиальными (см. рис. 3.12, а на вклейке). Если значение показателя преломления, измеренного в радиальном направлении, больше, чем в тангенциальном, то такой сферолит называют положительным, в противном случае говорят об отрицательном сферолите. [c.91]


    Линейное двойное лучепреломление представляет собой эффект, в точности аналогичный линейному дихроизму. Он возникает в том случае, когда различаются значения показателя преломления молекулы при ориентации светового вектора соответственно по ее двум главным геометрическим осям Ап = Яр — Наблюдаемое в растворе с ориентированными молекулами двойное лучепреломление представляет собой сумму двух эффектов эффекта собственной анизотропии молекул и эффекта анизотропии формы. Первый эффект является следствием оптической анизотропии самих молекул. Его можно связать с Д [ через преобразование Кронига—Крамерса (гл. 8). Но даже и в том случае, когда для самих молекул Ап = О, раствор с ориентированными несферическими молекулами является двоякопреломляющим, если показатели преломления растворенного вещества и растворителя различны этот эффект представляет собой двойное лучепреломление, обусловленное анизотропией формы. Как и в случае линейного дихроизма, измеряемая в опыте величина двойного лучепреломления зависит от того, как расположены молекулярные оси относительно задаваемых в эксперименте направлений. [c.286]

    При истолковании результатов эксперимента необходимо учитывать, что оптическая анизотропия зависит от двух факторов от формы молекУл и от анизотропии поляризуемости отдельных связей (анизотропия формы и анизотропия связи). Для насыщенных углеводородов, для которых не наблюдается анизотропии связей, можно судить об анизотропии формы на основании постоянной Керра и величины [c.143]

    В предыдущей главе мы изложили основы так называемого матричного метода модели Изинга, т. е. математического метода расчета статистической суммы и усреднения скалярных характеристик одномерной кооперативной системы. Этот метод, как уже отмечалось выще, был (в несколько иной форме) развит соверщенно независимо от проблем статистической физики макромолекул, в связи с потребностями теории ферромагнетизма. Очевидно, что полученные этим методом результаты ке могут объяснить свойства ферромагнитных тел, которые представляют собой не одномерные, а трехмерные кооперативные системы. Вместе с тем, макромолекулы являются идеальными объектами для применения статистики одномерных кооперативных систем. Единственная трудность здесь состоит в том, что основные поддающиеся экспериментальному исследованию физические свойства макромолекул, определяемые конформациями мономерных единиц, представляют собой не скалярные, а либо векторные (расстояние между концами цепи, дипольный момент), либо тензорные (оптическая анизотропия) величины. Поэтому применение статистики одномерных кооперативных систем к вычислению средних размеров, дипольных моментов и оптических анизотропий полимерных цепей потребовало соответствующего обобщения изложенного метода. [c.165]


    Анизотропия оптических, магнитных и других свойств кристалла обусловлена анизотропией молекул, а последняя в конечном итоге зависит от их формы — удлиненной, плоской или объемно вытянутой. Это обстоятельство также помогает сделать выбор между несколькими допустимыми стереохимическими конфигурациями молекулы. Дальнейшее уточнение структуры связано с учетом принципа плотной упаковки молекулы в кристалле должны располагаться так, чтобы свободное пространство между ними было минимальным (выступы одной молекулы входят во впадины соседней молекулы). Применение принципа плотной упаковки обеспечивает соответствие между положением молекулы в элементарной ячейке и ее структурой, т. е. с величинами ковалентных радиусов атомов, направлениями связей, валентными углами и т. д. Например, для парафинового углеводорода СНз(СН2)дСНз рентгенографическим путем найдено решетка моноклинная (а Вт с, а=7=90°, р 90°) с параметрами а=7,4 А, 6=5,оА, с=12,7 А в элементарной ячейке находится 5 молекул. [c.71]

    Увеличение контрастности изображения особо важно при микроскопических исследованиях массы для прессования зеленых заготовок , состоящих из оптически изотропного аморфного связующего (каменноугольного пека) и зерен коксов. Последние ориентированы в плоскости шлифа произвольно,. Вращая образец, можно совместить направление волокнистости той или иной группы зерен с плоскостью поляризации и по усилению яркости изображения определить наличие исследуемых компонентов в шихте, их ориентацию, равномерность распределения и пр., а также установить связь между формой зерен различных материалов и их микростроением. Специальными исследованиями доказано, что конфигурация зерен при одинаковом типе помола определяется направлением и величиной волокон исходного сырья. При хорошо выраженной слоистости коксы склонны дробитсья на продолговатые или пластинчатые зерна. Плоскость скола вдоль волокон очень ровная, в то время как поперечный излом неровный, зубчатый. На мелкопластинчатых участках, слоистость которых нарушена, форма зерен неправильная, и плоскость скола повторяет рисунок волокнистости. Зерна точечной структуры (пекового кокса) имеют округлую форму и шероховатую поверхность. При наличии в материале участков со структурами разных видов, дробление всегда происходит по слоистому участку. Такой характер дробления объясняется значительной анизотропией прочностных свойств коксов. [c.34]

    Оптические свойства. Анизотропия К. резко проявляется в онтич. свойствах. Луч света, проходящий через К., не только преломляется, но и распадается на два поляризованных луча (явление двупреломления), плоскости колебаний к-рых взаимно перпендик лярны. Если откладывать в направлении колебаний соответствующего поляризованного луча показатели преломления п, то можно получить геометрич. фигуру — оптич. индикатрису, точно характеризующую оптич. свойства данного кристаллич. вещества. Симметрия оптич. индикатрисы связана с симметрией К. У К. кубич. сингонии она имеет форму шара, т. е. кубич. К. характери.эуются одним значением показателя преломления п. Оптич. индикатриса гексагональных и тетрагональных К. имеет форму эллипсоида вращения. Эллипсоид вращения характеризуется двумя радиусами и, соответственно, К. имеют два главных значения п п — обыкновенный (соответствующий радиусу кругового сечения) и /ij — необыкновенный (перпендикулярный к круговому сечению). В К. низшей симметрии индикатриса будет трехосным эллипсоидом, т. е. описывается тремя [c.431]

    Чувствительность двойного лучепреломления к напряжениям в полимерном блоке используется для моделирования напряжений, образующихся в технических конструкциях (метод фотоупругости см. гл. IV). Фотоупругость, т. е. проявление оптической анизотропии у первоначально изотропного материала под действием напряжений, отражает характер деформаций, возникающих при нагрузках. При малых нагрузках (в области упругости деформации) полностью-обратимы и следуют практически безынерционно за изменением нагрузки. При больших нагрузках, когда вознхшают неупругие деформации, зависимость деформации от нагрузки становится нелинейной и имеет вид петли гистерезиса. Как видно из рис. 30 [72], двойное лучепреломление меняется с нагрузкой аналогично деформации, так как оно связано с изменением поляризуемости молекул при деформации. Между тем зависимость двойного лучепреломления от деформации обратима и линейна, даже когда деформации заведомо неупругие (рис. 31). При значительных растяжениях зависимость двойного лучепреломления от деформации становится нелинейной, проявляя признаки насыщения (рис. 32) [73]. Это можно объяснить тем, что в этой области растяжений происходит скольжение макромолекул или их агрегатов относительно друг друга, которое уже не сопровождается дальнейшей их ориентацией. Если полимер частично закристаллизован, то двойное лучепреломление при деформации обусловлено двумя факторами ориентацией молекулярных цепей в аморфных областях и ориентацией кристаллитов. Добавочный вклад, так называемый эффект формы, возникает из-за разности показателей преломления кристаллических и аморфных областей. На рис. 32 изображена зависимость двойного лучепреломления от растяжения для полиэтилена, а также вклад в двойное лучепреломление кристаллических ббластей, доля которых определена е помощью рентгеновских данных. Данные по двойному лз чепреломле-нию в полимерах как аморфных, так и содержащих кристаллические области приведены в [74, 75]. [c.57]


    Подведем некоторые итоги. Из изложенного следует, что как механические свойства полимеров в блоке и прежде всего высокоэластичность, так и специфическое поведение полимеров в растворах находят свое объяснение в гибкости длинных цепных образований, которыми являются макромолекулы полимеров. Иными словами, большие или меньшие участки полимерных цепей обладают независимой друг от друга подвижностью. Теоретическое истолкование наблюдаемых фактов можно поэтому осуществить на основе статистических представлений макромолекула может трактоваться как статистический ансамбль элементов с независимыми степенями свободы. Экспериментальное определение свойств отдельных макромолекул в растворах — их размеров, формы, оптической анизотропии, дипольных моментов и т. д.—дает позможность всесторонней пров рки статистической теории полимерных цепей. Задача последней состоит в вычислении названных параметров на основе имеющихся сведений о химическом строении макромолекул. В этом смысле теория макромолекул преследует те же цели, что и теория малых молекул, предназначенная для установления связи между различными молекулярными постоянными, например межатомными расстояниями, динольными моментами, поляризуемостью и т. д., и для вычисления этих постоянных. Теория малых молекул строится либо на квантовохимической, либо на полуэмнирической основе. Существующие в настоящее время методы квантовой химии недостаточно совершенны, и применение их сопряжено с (зчень громоздкими расчетами. Поэтому конкретные определения молекулярных постоянных и соотношений между ними обычно эффективно осуществляются с помощью полу-эмпирической теории, в то время как общие представления о природе этих постоянных имеют глубокое квантовомеханическое обоснование. В нолуэмпирическо теории малых молекул широко применяется валент- [c.40]

    За последние годы появилось несколько работ, в которых определение структуры было связано с использованием магнитных свойств кристалла. В принципе между оптической и магнитной анизотропией имеется много общего. Математический аппарат, применяемый для их описания, одинаков. И та и другая характеризуются тензорами второго ранга, т. е. геометрически—индикатрисами, имеющими форму эллипсоидов с тремя осями и соответственно с тремя главными коэффициентами (показателями преломления Ng, Ыр или соответственно магнитными восприимчивостями Х1> Хз)-Зависимость ориентации индикатрисы от симметрии кристалла имеет одинаковый характер в обоих случаях. Преимуществом магнитных свойств является то, что они в еще большей степени зависят от формы и ориентации атомных группировок и в еще меньшей степени—от взаимодействия таких группировокдруг с другом. Отрицательной чертой является трудность получения экспериментальных данных сложность аппаратуры, тонкость эксперимента и необходимость иметь довольно крупные монокристаллы. [c.222]


Смотреть страницы где упоминается термин Анизотропия оптическая формы и связи: [c.85]    [c.303]    [c.410]    [c.264]    [c.250]   
Теоретические основы органической химии Том 2 (1958) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Анизотропия

Анизотропия оптическая формы

Анизотропия связей



© 2024 chem21.info Реклама на сайте