Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы магнитные свойства

    Карта электронной плотности молекулы полиэтилена (рис. 48) позволяет обнаружить одну интересную подробность. Группы СНг не шарообразны, как это можно было бы предположить, а вытянуты в плоскости связей С— Н, перпендикулярной оси цепи [37]. Несомненно, это отчасти обусловлено анизотропными термическими колебаниями в кристалле. Магнитные свойства кристаллов других цепных соединений указывают на искажение СНг-групп в направлении, перпендикулярном оси цепи. Таким образом, мы видим, что совместное применение рентгенографических методов и гармонического анализа может дать сведения о поляризации в молекулярных системах, которые невозможно получить более простыми рентгенографическими методами. [c.87]


    Авторы стремились дать в справочнике, хотя и в сжатой форме, но систематический и по возможности широкий набор современных физико-химических характеристик. В настоящее издание введено много новых таблиц, и расширен ряд разделов (свойства растворителей и растворов, явления переноса — вязкость и диффузия в газах и растворах, сведения по симметрии молекул и кристаллов, магнитные свойства атомов и молекул, молекулярные диаграммы, молекулярные спектры, кинетика реакций в растворах, адсорбция, катализ и ингибирование и т. п.). [c.8]

    Характерной особенностью переходных металлов является незавершенность их электронных (1 —оболочек, определяющая их специфические химические (переменная валентность, склонность к комплексообразованию), многие физические (образование кристаллов металлического типа, работа выхода электрона из металла, электропроводимость, магнитные свойства и др.) и каталитические свойства. [c.93]

    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]

    Раздел химии, изучающий магнитные свойства веществ и их связь со строением молекул и кристаллов, называется магнетохимией. Все вещества, за исключением атомарного водорода, обладают диамагнетизмом. Диамагнетизм обусловлен прецессией [c.130]

    МАГНИТНЫЕ СВОЙСТВА КРИСТАЛЛОВ [c.190]

    Дефекты кристаллов и их возникновение. Ранее были рассмотрены физико-химические характеристики идеальных кристаллических структур. Закономерности формирования таких структур позволяют объяснить многие свойства и реальных кристаллов, такие, например, как плотность, диэлектрическая проницаемость, удельная теплоемкость, упругость. В то же время целый ряд очень важных свойств твердых систем (прочность, электрическая проводимость, теплопроводность, оптические и магнитные свойства, каталитическая активность) существенно зависит от того, насколько кристаллические структуры таких веществ отклоняются от идеальных. В реальных кристаллах всегда существуют структурные нарушения, обычно называемые несовершенствами или дефектами. Дефекты кристаллов иногда сообщают твердым телам весьма ценные свойства, в связи с чем их реализуют искусственным путем. [c.78]


    При рассмотрении физических свойств и характера их изменения в периодической системе следует различать атомные свойства (свойства элементов) и свойства простых веществ (гомоатомных соединений). Кроме того, физические свойства простых веществ могут характеризовать обе формы химической организации вещества (молекула и кристалл) или только одну из них. Очевидно, такие свойства, как температура плавления и кипения, твердость и вязкость, электрическая проводимость и т. п., относятся только к конденсированному состоянию вещества. С другой стороны, например, магнитные свойства (диа- или парамагнетизм) характерны как для кристаллов, так и для молекул. Элементы (изолированные атомы) характеризуются сравнительно небольшим набором ([)пзи-ческих свойств заряд ядра, атомная масса, орбитальный радиус, потенциал ионизации, сродство к электрону. [c.32]

    Ядерные излучения используют для получения новых веществ, для улучшения свойств полимеров и т. д. Большой интерес представляет изменение свойств различных материалов под влиянием этих облучений. Например, оказалось, что из предварительно облученного угля легче извлекается частый его спутник германий каучуки вулканизуются без добавок серы полиэтилен становится более устойчивым к нагреванию и органического стекла (см. гл. ХП1) нагреванием и облучением можно получить пенопласт и т. д. Ядерные излучения возбуждают множество цепных реакций. В полупроводниковых кристаллах они увеличивают число различных дефектов, что резко изменяет их свойства, особенно электрофизические. В связи с этим упомянем о чувствительности к излучениям, радиодеталей, применяемых в управляющих и регистрирующих приборах атомных реакторов. Радиолампы меняют параметры незначительно. Полупроводниковые приборы теряют свои свойства уже при малой дозе облучения. Масляные конденсаторы вспучиваются при облучении вследствие разложения масла. Керамические и слюдяные конденсаторы меняют свойства только после длительного облучения. У металлических сопротивлений электрические свойства практически не меняются, а у угольных сопротивление уменьшается. Магнитные свойства силиконового железа, пермаллоя (см. гл. ХИ, 7) и др. ухудшаются. Как видно, электронные приборы можно использовать в полях излучений (в частности и космических) при условии не слишком больших доз облучения и очень осмотрительно. [c.47]

    Многие магнитные свойства — структурно чувствительны и сильно зависят и от поверхностного, и от объемного совершенства кристалла. Естественно поэтому предполагать наличие у НК и пленок особых магнитных свойств. [c.498]

    Нитевидные кристаллы. Изучение магнитных свойств НК проводили преимущественно на железе, никеле и кобальте. На рис. 198 показано изменение доменной структуры НК железа под действием приложенного магнитного поля вдоль оси роста [6]. Наиболее тонкие НК (й <2 мкм) могут быть монодоменными и при Я = 0. [c.498]

    Волновой характер имеют не только электроны, но также протоны, нейтроны (разд. 3.5) и другие частицы. Их длины волн можно рассчитать по уравнению де Бройля, подставляя в него соответствующие значения масс частиц. Относительная способность разных атомов кристалла рассеивать нейтроны отличается от соответствующей способности рассеивать рентгеновские лучи. Как следствие этого, изучение дифракции нейтронов кристаллами дает дополнительную информацию к той, которую можно получить при изучении дифракции рентгеновских лучей. Оказалось, что дифракция нейтронов дает особенно ценную информацию о расположении атомов водорода в кристалле, содержащем более тяжелые атомы, а также при изучении веществ, обладающих магнитными свойствами. [c.72]

    Предположение о возможности заполнения электронами уровня 5/ у элементов, находящихся в конце периодической системы, было высказано еще Бором в 1923 г. Тщательное изучение химических свойств, спектров поглощения в водных растворах и кристаллах, магнитной восприимчивости, а также кристаллографических и спектроскопических данных элементов от актиния (атомный номер 89) до калифорния (атомный номер 98) позволило Сиборгу сделать вывод, что наиболее вероятным родоначальником семейства элементов с заполняющимся 5/ электронным уровнем является актиний и что это семейство следует называть семейством актинидов [889, 890]. Имеются и другие мнения о родоначальнике этого семейства  [c.5]

    Магнитные свойства . Кристаллы, состоящие из ионов с замкнутой электронной конфигурацией — 18-электронной или [c.203]

    Так, представления ТКП можно распространить на описание кристаллических соединений. Если допустить, что кристалл состоит из ионов, то каждый из ионов ( -эле-мента 1 аходится в поле отрицательных ионов. Это приводит к расщеплению -уровня иона -элемента, что определяет магнитные свойства его соешнений, их окраску и другие свойства. [c.509]


    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Жидкие кристаллы диамагнитны. Их магнитная восприимчивость вдоль длинной оси молекул больше, чем в перпендикулярном направлении. Благодаря этой особенности молекулы жидких кристаллов в магнитном поле ориентируются вдоль его силовых линий. Практически полная ориентация достигается в слабых магнитных полях. Тонкий слой ориентированного магнитным полем жидкого кристалла по свойствам аналогичен пластине, вырезанной из твердого монокристалла. Это свойство нематической фазы создает очень простой способ получения жидких монокристаллов прн помощи воздействий магнитного поля, в то время как выращивание твердых монокристаллов сталкивается со значительными трудностями. [c.245]

    Однако известно уже несколько тысяч веществ, которые в жидком состоянии обладают, как и твердые кристаллы, анизотропными свойствами. Такие вещества называют жидкими кристаллами. Своеобразие структуры жидких кристаллов проявляется в том, что образующие их частицы могут свободно перемещаться друг относительно друга, при этом их ориентация сохраняется. Частицы или располагаются таким образом, что их оси ориентированы нитеобразно в одном направлении, или размещены в параллельных слоях, внутри которых движение частиц разупорядоченно. Первый тип жидких кристаллов называют нематическим или нитеобразным, второй — смектическим (смегма — мыло). Жидкокристаллическое состояние, реализуется, например при растворении в воде ацетата холестерина, олеатов калия и аммония, различных липидов, а также других веществ, как правило, органической природы, молекулы которых имеют нитеобразную структуру. Анизотропность жидких кристаллов влияет на их электрические, оптические и магнитные свойства. [c.75]

    Теория кристаллического поля. В основе теории лежат фундаментальные труды Бете (1929) и Ван Флека (1932). Первоначально теория рассматривала расщепление ато1У1ных термов в кристалле и применялась для объяснения магнитных свойств кристаллов. Впоследствии она была использована также для объяснения спектров поглощения и ряда других свойств комплексных соединений переходных металлов и лантаноидов. Основные идеи теории  [c.237]

    Теория кристаллического поля Основы теории кристаллического поля были сформулированы Г. Бете (1929) и развиты Ван Флеком (1932) применительно к магнитным свойствам кристаллов. Позднее, с 50-х годов нашего столетия, на основе этой теории были объяснены не только магнитные, но и спектральные, электрические, термодинамические и другие свойства систем, в состав которых входят ионы с незаполненными d- и /-оболочками. [c.115]

    В принципе все физические свойства кристаллов зависят от их структуры и, следовательно, от дефектности решетки. Однако не все свойства в равной мере чувствительны к наличию дефектов. Обычно число равновесных дефектов относительно невелико, поэтому к мало чувствительным свойствам относятся все те, которые зависят только от средних значений молекулярных параметров частиц в решетке. Сюда относятся такие термодинамические свойства, как теплоемкость и энергия кристаллов. Более чувствительны к наличию дефектов оптические свойства кристаллов в области основной полосы поглощения. Высокочувствительны те физические свойства, которые практически полностью определяются наличием отдельных дефектов в кристаллической решетйе — диффузия в кристаллах, электропроводность примесных полупроводников, поглощение света вне основной полосы поглощения, люминесценция, некоторые магнитные свойства, скорость химических реакций в кристаллах. Для химии большое значение имеет равновесная нестехиометричность ионных кристаллов, возникающая в связи с появлением в решетке структурных дефектов. [c.271]

    Полинг предполагает, что образование связей в переходных металлах обусловлено электронами в с1-, з- и ]0-состояниях, а не только электронами в -состоянии. Одни лишь -орбитали недостаточны для образования связи, и только гибридизация между й-, 5- и р-ор-биталями может привести к очень стабильным гибридным орбиталям. С этой точки зрения в IV периоде для образования связи пригодны одна 45-, три 4р- и пять 3 /-орбиталей и при полном их использовании связь может осуществляться девятью орбиталями. Если бы для связи использовались все девять возможных орбита-лей, то при переходе от К к Си следовало бы ожидать непрерывного увеличения прочности связи. Однако максимум прочности решетки достигается у хрома, а далее прочность уменьшается по направлению к никелю. Это привело Полинга к предположению, что только некоторые -орбитали пригодны для образования металлической связи, С учеюм магнитных свойств принимается, что для образования металлической связи из пяти -орбиталей пригодны только 2,56. Остальные 2,44 -орбитали являются атомными орбиталями. Электроны на атомных -орбиталях связаны с ядром атома и не участвуют в образовании металлической связи. Электроны связывающих -орбиталей полностью отделены от атома и коллективизированы в системе электронов кристалла. В свою очередь, атомные -орбитали, содержащие электроны с неспаренными спинами, обусловливают магнитные свойства металлов. Таким образом, Полинг различает связывающие -электроны, которые участвуют в ковалентных связях между соседними атомами кристалла и обеспечивают силы сцепления в металле и атомные -электроны, ответственные за парамагнетизм. Связывающие электроны описываются гибридными 5р-функциями, атомные же — просто -функциями. [c.148]

    Полупроводники. Магнитные свойства полупроводников, как и металлов, обусловлены их электронной структурой. Однако в отличие от металла полупроводники в основном состоянии (О К) не имеют электронов проводимости. Они появляются лишь с повышением температуры, и число их растет по экспоненциальному закону (см. гл. V). Поэтому можно ожйдать, что часть магнитной восприимчивости, обусловленная носителями тока, будет резко зависеть от температуры. Помимо этого, вклад в восприимчивость будет вноситься ионными остовами кристаллической решетки, а также различными дефектами кристалла, в первую очередь атомами примеси. Магнитную восприимчивость полупроводника, не обладающего атомным магнитным порядком, можно приближенно представить в виде суммы [c.305]

    Магнитные свойства простых веществ также обнаруживают периодическую зависимость от порядкового номера элемента (рис. 126), но закономерности, которым подчиняется эта зависимость, требуют пояснения. В стандартных условиях простые вещества находятся в разном агрегатном состоянии. Все газообразные и жидкие простые вещества являются диамагнитными. Единственным исключением является кислород, парамагнетизм двухатомной молекулы которого объясняется с позиций метода МО. Сложнее обстоит дело с кристаллическими веществами. Магиитные свойства крист аллов определяются главным образом тремя вкладами диамагнетизмом атомного остова, орбитальным диамагнетизмом валентных электронов и спиновым парамагнетизмом. У неметаллов, в кристаллах которых доминирует ковгшентная связь, вклад спинового парамагнетизма пренебрежимо мал, поэтому все они диамагнитны. Парамагнитными свойствами обладают все переходные металлы с недостроенными и /оболочками, щелочные, щелочно-земельные металлы и магний, а также алюминий. -Металлы с заполненными внутренними оболочками (подгруппы меди и цинка) диамагнитны, так как у них спиновый парамагнетизм не перекрывает двух диамагнитных составляющих (орбитального диамагнетизма валентных электронов и диамагнетизма атомного остова). По той же причине диамагнитными свойствами обладают металлы подгруппы галлия, олово и свинец. [c.248]

    В дефектных кристаллах другого типа, где имеется избыток одного из компонентов, также образуется избыток или, наоборот, дефицит валентных электронов. Например, если хлорид натрия кристаллизуется из расплава Na l, в котором содержится небольшое количество металлического натрия, в кристаллическую решетку местами встраиваются не ионы, а атомы натрия. Там, где это происходит, возникает избыточный электрон по сравнению с числом электронов, необходимых для насыщения валентности. Образующийся кристалл обладает поэтому необычными электрическими и магнитными свойствами, а кроме того, нередко меняет окраску по сравнению с кристаллом чистой соли. [c.183]

    Принцип непостоянства состава твердофазных соединений. Представления о переменном составе кристаллических соединений получили прочную основу после того, как в результате применения методов статистической термодинамики была установлена взаимосвязь между дефектами кристаллической решетки и несте-хиометрией н была доказана неизбежность появления нестехиометрии в любых ионных кристаллах. Современные представления о когерентном срастании фаз, термодинамически и кристаллохимически мало отличающихся друг от друга, например, позволили понять особенности ряда твердофазных материалов со специальными электрическими (суперионные проводники) и магнитными свойствами (высококоэрцитивные ферриты), объяснить природу нестехиометрии твердых электролитов со структурой р-глинозема н открыть новые возможности для синтеза подобных соединений. [c.167]

    В заключение Т1Рз очищают путем возгонки в вакууме (рис. 155). В наклонно установленную трубчатую печь вводят закрытуто с одной стороны кварцевую трубку на дно трубки помещают никелевый тигель с возгоняемым-веществом. Открытый конец кварцевой трубки закрыт крышкой со штуцером, ведущим к вакуумному насосу. В крышку плотно (с помощью пицеина) вставлен пальчиковый холодильник из меди, охлаждаемый водой. На нижнеМ конце пальчикового холодильника имеется медный стержень, который способствует росту кристаллов Т Рз. Продукт начинает возгоняться при 10 = — 10-3 рт. ст. Через 4 ч при 1000°С возгоняется 80% продукта, осаждаемого на пальчиковом холодильнике в виде сверкающих синих кристаллов. В тигле остается серо-черный остаток. Возогнанный Т1Рз настолько чист,, что может применяться для измерения магнитных свойств. [c.285]


Смотреть страницы где упоминается термин Кристаллы магнитные свойства: [c.388]    [c.70]    [c.156]    [c.242]    [c.37]    [c.282]    [c.202]    [c.556]    [c.460]    [c.49]    [c.1728]    [c.1729]    [c.31]    [c.33]    [c.35]    [c.36]    [c.433]    [c.204]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Магнитные свойства и строение ионной связи в молекулах и кристаллах

Магнитные свойства и строение ковалентной ординарной связи в молекулах и кристаллах



© 2024 chem21.info Реклама на сайте