Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитрогруппа, влияние на диссоциацию заместителей

    Карбоновые кислоты являются умеренно сильными кислотами. Большинство известных карбоновых кислот (уксусная, бензойная и др.) имеет константу диссоциации около 10 . Кислотность карбоксильной группы мало зависит от строения кислоты, напротив, заместители оказывают сильное влияние на кислотность. Например, все алифатические кислоты, как неразветвленные, так и разветвленные обладают весьма близкими константами диссоциации (табл. 3.1) [1]. Заместители же, например галогены, нитрогруппа, гидроксильная группа, дополнительная карбоксильная группа, заметно повышают кислотность карбоксильной группы. Данные [c.132]


    Принимается, что энергия промежуточного комплекса равна нулю, а относительная энергия начального и конечного состояний рассчитывается на основе изменения энергии, сопровождающего разрыв и образование связей, перенос электрона, сольватацию и десольватацию, и изменения в делокализации. В расчете применяются некоторые эмпирические поправки, с помощью которых достигается внутренняя согласованность. Особое значение для хорошего соответствия с экспериментальными данными имеет эффект, который относится к электроотрицательным заместителям, связанным с реакционным центром. Такой а-замести-тель вызывает, по-видимому, понижение энергии переходного состояния при нуклеофильной атаке. Энергетические уровни активированного комплекса вычисляют на основе соотношения между экзо- и эндотермичностью реакции и процентом энергии диссоциации связи, необходимой для переходного состояния с учетом влияния а-заместителя. Это применение постулата Хэммонда [204] предусматривает построение эмпирического графика зависимости экзо- и эндотермнчностн от процента энергии диссоциации связи. Хорошее соответствие с определенной экспериментально энергией активации является достаточным обоснованием такого метода. Результаты относятся к реакциям, протекающим в метаноле. На рис. 13 изображены координаты реакций для некоторых систем, имеющих отношение к данному обзору [16, 200]. В качестве примеров приведены реакции 2,4,6-тринитро-, 2,4-динитро- и 4-нитроанизола. Как и ожидалось, устойчивость различных комплексов по сравнению с исходными ароматическими соединениями возрастает с увеличением числа нитрогрупп. Это находит свое отражение в уменьшении энергии активации образования и возрастании [c.501]

    Для органических кислот мы различаем две группы заместителей — отрицательные (негативирующие) и положительные (позитивирующие). ОтрицателыАе усиливают кислотный характер и повышают константу диссоциации сюда относятся галоиды, нитрогруппа, группа циана, гидроксильная, родановая и фенильная группы, вторая карбоксильная группа, а также двойная связь. Положительные групЛы уменьшают константу диссоциации тс ним откосятся, до известной степени, алкилы, в особенности же амино-группа. Если рассматривать один и тот же заместитель, то его влияние сильно зависит от положения и обычно бывает тем больше, чем ближе заместитель находится к карбоксильной группе при удалении от нее это влияние приближается к некоторому наименьшему предельному значению. Такая закономерность наблюдается чаще всего для отрицательных заместителей. С другой стороны, введение Одного и того же заместителя в одинаковом поло- [c.174]


    Не менее интересно влияние заместителя на диссоциацию гидроксила, расположенного в бензольном кольце. Если для реагента X величина рК1=7,3, то введение в бензольное кольцо в орто-положение к гидроксилу сульфогруппы понижает величину рКх до 6,6—6,8 (реагенты XIV, XX), а нитрогруппы — до 4,03 (реагент XVI). Уве.тичение количества нитрогрупп, как и следовало ожидать, приводит к дальнейшему значительному повы- [c.112]

    Рассматривая полученные результаты с учетом влияния pH среды на состояние молекулы озона, можно заключить о сравнительно небольшом вкладе радикапьных реакций в процессе окисления. Об этом свидетельствует отсутствие увеличения скорости реакции в щелочной среде. Вероятно, разложение нитрофенолов является в основном результатом прямого взаимодействия молекулярного озона с нитрофенолят-ионами. При этом четко проявляются свойства озона как электрофильного агента. Так, увеличение числа нитрогрупп в молекуле соединения сопровождается уменьшением скорости его разложения озоном (рис. 19, а, кривые 3-5 рис. 19, б, кривые 2, 4, 5 ), наличие алкильных заместителей облегчает процесс деструкции (рис. 19, а, кривые 1, 4 рис. 19, б, кривые 2, 4 ). Таким образом, относительная реакционная способность соединения в пределах класса определяется не только степенью диссоциации соединения в растворе, но и природой заместителей в ароматическом кольце. [c.64]

    Для более глубокого понимания подобного эмпирического правила прежде всего надо выяснить его точность и границы применимости. Являясь правилом, эта закономерность не претендует на строгость закона. Ее область применения очень широка, но не безгранична. Так, например, для стоящей в пара-положении нитрогруппы следует употреблять два значения сг. Приходится задумываться над тем, что замещение в ядре не охватывается данным правилом. Шварценбах [111] высказал поэтому предположение, что условием действительности правила является определенный однотипный механизм реакции. Такое широкое правило, как правило Гаммета, может по Шварценбаху соблюдаться лишь тогда, когда заместители, влияние которых выражается величиной ст, не оказывают воздействия на самую реакционноспособную группу или по меньшей мере оказывают на нее очень малое влияние. Подобное влияние, согласно его точке зрения, может заключаться только в электростатическом действии, которое изменяет поле вокруг молекулы, так что заместитель, вызывающий такое изменение, независимо от природы реагирующей группы понижает или повышает энергию активации определенных механизмов реакций всегда на одну и ту же величину. Это имеет силу для большинства находящихся к мета- и пара-положениях заместителей, но не для орто-, так как последние стоят слишком близко к реакциопиоспособной группе. Исключений следует также ожидать в том случае, если введение заместителя глубоко изменяет состояние связи в молекуле. Подобные влияния, касающиеся распределения электронов, имеются в частности тогда, когда возможна мезомерия во всей системе ядро + заместитель. Кроме того, следует принимап, во впимапие и возможный индуктивный эффект (ср. стр. 528). Хорошим примером, показывающим значение мезомерного эффекта, являются исследования Шварценбаха о кислотности фенолов и т и о ф е и о л о в. Для констант диссоциации фенолов и тиофенолов в общем довольно хорошо соблюдается соотношение Гаммета, которое в этом случае дает [112]  [c.509]


Смотреть страницы где упоминается термин Нитрогруппа, влияние на диссоциацию заместителей: [c.1103]    [c.236]    [c.834]    [c.228]    [c.924]   
Теоретические основы органической химии Том 2 (1958) -- [ c.515 , c.517 ]




ПОИСК





Смотрите так же термины и статьи:

Заместителей влияние

Нитрогруппа

Нитрогруппа, влияние на диссоциацию



© 2025 chem21.info Реклама на сайте