Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойная спираль ДНК также

    Известно также, что две полимерные цепочки дезоксирибонуклеиновой кислоты могут образовать двойную спираль, если входящие в структуру каждого звена полимерной цепи гетероциклические основания — аденин, гуанин, цитозин и тимин — чередуются таким образом, что тимину в одной цепи соответствует аденин в другой, и цитозину в одной цепи соответствует гуанин в другой. Важную роль при этом играют водородные связи, которые образуются между этими парами оснований. Образование водородных связей между тимином и аденином, гуанином и цитозином можно представить следующим образом  [c.120]


    У насоса со спиральным отводом при работе могут возникнуть радиальные силы, изгибающие вал насоса. Радиальные силы возникают вследствие того, что спираль не является симметричным каналом по отношению к оси вращения рабочего колеса. При отклонении подачи насоса от расчетной нарушается закон площадей й давление в широких сечениях спирали будет больше, чем в узлах, что приводит к появлению радиальной силы. Для устранения этого недостатка у высоконапорных одноступенчатых насосов, а также у насосов с большей производительностью, в спиральном канале устанавливают перегородку, т. е. образуют двойную спираль (рис. 1.31). [c.32]

    Приведенные экспериментальные данные относятся к обычно исследуемой в растворе линейной, незамкнутой ДНК. У вирусов, а также в клетках бактерий на некоторых стадиях их развития обнаруживается кольцевая замкнутая форма ДНК. В такой ДНК, представляющей собой обычную двойную спираль, каждая из комплементарных нитей является непрерывной замкнутой на себя. Поэтому полное число оборотов одной нити относительно другой не может меняться ни при каких изменениях условий, сохраняющих целостность сахаро-фосфатного остова обеих нитей. Проведенные исследования показали, что при комнатной температуре двойная спираль кольцевой ДНК закручена как целое в суперспираль (с плотностью один виток суперспирали на 120—300 пар оснований) противоположного знака, т.е. в левую. При нагревании происходит тепловое расширение кристалла ДНК и уменьшение степени закрученности двойной спирали. Это приводит к уменьшению суперспирализации. При дальнейшем нагревании происходит раскручивание двойной спирали и образование суперспирали того же знака (правой). Иными являются и характеристики плавления кольцевой замкнутой ДНК. Температура плавления такой ДНК приблизительно на 20° выше, чем для линейной молекулы (см. рис. 4.6). Это происходит потому, что расплавленные нити в кольцевой молекуле остаются закрученными относительно друг друга и энтропия расплавленного состояния меньше, чем для линейной молекулы. Кроме того, ширина интервала плавления замкнутой кольцевой ДНК в 2—3 раза больше, чем ширина интервала плавления линейной молекулы. [c.75]

    Известна также, что две полимерные цепочки дезоксирибонуклеиновой цепи могут образовать двойную спираль, если входящие -в- труктуру каждого звена полимерной цепи гетероциклические [c.109]

    Филаменты актина могут диссоциировать йа глобулярные молекулы с молекулярной массой примерно 58 000. В самом филаменте эти молекулы агрегированы в две цепи, которые скручены в двойную спираль (рис. 15.10). Филаменты миозина также могут диссоциировать на отдельные молекулы миозина с молекулярной массой около 525 000. При помощи электронного микроскопа установлено, что они имеют форму стержней длиной 200 нм и диаметром 2,0 нм на одном конце такого стержня расположена головка длиной 20 нм и диаметром 4 нм. Рентгенограммы показывают, что вторичная структура таких стержней представляет собой а-спираль, причем стержень, вероятно, состоит из двух скрученных цепей, имеющих конформацию -спирали. Каждый филамент миозина состоит примерно из 600 молекул. Электронные мик- [c.436]


    ЭТОМ образуются специфич. пары комплементарных оснований, имеющие почти одинаковые размеры. Поэтому двойная спираль имеет очень однородную регулярную структуру, мало зависящую от конкретной последовательности оснований-св-во очень важное для обеспечения универсальности механизмов репликации (самовоспроизведение ДНК или РНК), транскрипции (синтез РНК на ДНК-матрице) и трансляции (синтез белков на РНК-матрице). В каждом из этих т. н. матричных процессов К. играет определяющую роль. Напр., при трансляции важное значение имеет К. между тройкой оснований матричной РНК (т. и. кодоном, см. Генетический код] и тройкой оснований транспортной РНК (поставляют во время трансляции аминокислоты). К. определяет также вторичную структуру нуклеиновых к-т. Одноцепочечные РНК благодаря К. оснований, навиваясь Сами на себя, образуют относительно короткие двухспиральные области ( шпильки и петли ), соединенные одноцепочечными участками, К. в отдельных парах оснований ДНК может нарушаться из-за появления отклонений в их строении, к-рые могут возникать спонтанно или в результате действия разл. факторов (химических и физических). Следствием этих изменений м. б. мутации. [c.443]

    Второй тип двойной спирали, содержащей РНК, был открыт в 1961 г. Он создается в результате гибридизации цепи РНК с цепью ДНК, имеющей комплиментарную последовательность оснований [64], Важность таких РНК-ДНК-гибридов исключительно возросла, и сегодня они являются ключевым звеном в определении первичных последовательностей и в умелом манипулировании с генами (см. разд. 22.4.4 и 22.5.4). Такие гибриды быстро образуются ири инкубации раствора двух однонитевых молекул при температуре примерно на 25°С ниже, чем температура, при которой двойная спираль наполовину диссоциирована. Они более стабильны, чем дуплексы ДНК-ДНК с соответствующей последовательностью оснований [65]. По-видимому, такие гибриды также имеют конформацию /4-формы ДНК- [c.60]

    Удалось выделить в интактном (неповрежденном) виде только некоторые ДНК вирусов, митохондрий и хлоропластов. Исследования этих молекул при помощи физических (в частности, кристаллографических) и физико-химических методов показали, что двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы. Оказалось также, что линейная ДНК может образоваться из кольцевой формы или существовать как таковая в природе. В некоторых вирусах обнаружены, кроме того, одноцепочечные ДНК линейной и кольцевой форм (рис. 3.3). [c.111]

    Статистико-термодинамическое рассмотрение редупликации ДНК проведено в работах [168, 169] (см. также [6). Изменение свободной энергии при образовании двух двойных спиралей из одной исходной двойной спирали и нуклеозидтрифосфатов можно представить в виде [c.538]

    Поскольку новая форма в отличие от исходной способна образовывать три водородные связи вместо двух, дочерняя двойная спираль будет содержать неправильные пары. Подобный эффект— мутагенез — может быть также вызван радиоактивным облучением или действием тех или иных физических и химических факторов, например замещением аминогруппы органического основания на группу ОН  [c.340]

    Метод динамического двойного лучепреломления также позволяет обнаружить конформационные переходы типа спираль—клу- [c.557]

    В последнее время появились данные, свидетельствующие о том, что и работа топоизомераз типа I также идет путем образования разрывов и протаскивания нити через образовавшуюся щель. Только, в отличие от топоизомераз типа II, топоизомеразы-1 проделывают этот трюк не с двойной спиралью, а с однонитевой ДНК, так что, по-видимому, узлы в однонитевой ДНК завязываются топоизомеразой-1 точно так же, как узлы в двунитевой молекуле — топоизомеразой-11. [c.118]

    Как это ни покажется странным, до недавнего времени, однако, не было строго доказано, что ДНК — это действительно двойная спираль. Дело в том, что экспериментальные данные, на которых основывались Уотсон и Крик, а также те, кто шел за ними, не могут трактоваться вполне [c.129]

    Первичная структура рибосомной 23S РНК Е. соИ также была установлена как ее прямым химико-энзиматическим анализом, так и путем секвенирования ДНК ее клонированного гена (рис. 44). Одновременно и некоторое время спустя были секвенированы также высокополй-мерные РНК большой рибосомной субчастицы ряда других организмов, а также хлоропластов и митохондрий, которые дали материал Для сравнительно-эволюционного анализа. Весь арсенал методов, примененный в случае 16S РНК, был использован для изучения вторичной структуры 23 S РНК, и были найдены принципиально те же закономерности и особенности. Схема модели вторичной структуры 23S РНК Е. соН дана на рис. 45. Как и в 16S РНК, около половины или более остатков цепи 23S РНК оказываются вовлеченными в двойные спирали. Всего можно насчитать несколько более 100 индивидуальных спиралей. Наиболее ярким отличием от 16S РНК является, по-видимому, комплементарное спаривание 5 -конца 23S РНК с ее З -концом довольно стабильная совершенная двойная спираль из 8 пар нуклеотидов удерживает оба конца вместе, в значительной мере фиксируя общую свернутость цепи в конечную компактную структуру. Как и в 16S РНК, пары G U не редкость в спиралях 23S РНК. Кроме того, в спиралях имеются пары G А и, [c.77]

    С) высокой вязкостью. Если такой раствор нагреть до температуры выше 80-90°С или довести его pH до экстремальных значений, то вязкость раствора резко упадет, что указывает на изменение физического состояния ДНК. Мы уже видели, что высокая температура и экстремальные значения pH приводят к денатурации, или раскручиванию глобулярных белков (разд. 6.12). Точно так же высокие температуры и экстремальные значения pH вызывают денатурацию, или расплетание, двухцепочечных спиралей ДНК, разрушая водородные связи между спаренными основаниями и гидрофобные взаимодействия, с помощью которых удерживались вместе уложенные в стопку основания. В результате двойная спираль расплетается с образованием хаотических, беспорядочных одноцепочечных клубков до тех пор, пока обе цепи, наконец, не разделятся полностью. При денатурации (ее называют также плавлением) ковалентные связи в остове молекулы не разрываются (рис. 27-14). [c.865]


    В молекулярной биологии широко используется способность денатурированных ДНК ренатурировать с восстановлением исходной двуспиральной структуры. Она лежит в основе метода молекулярной гибридизации нуклеиновых кислот, который позволяет выявлять степень сходства различных ДНК (а также РНК). Для этого денатурированную ДНК (если изучается гибридизация двух различных нуклеиновых кислот, то одна из них несет радиоактивную метку) помещают в условия, оптимальные для образования двойных спиралей (ионная сила раствора — около 0,2 температу за — на 10—20 "С ниже Тт нативной ДНК). В случае полностью комплементарных цепей ДНК со временем они целиком превратятся в двуспиральные молекулы. Если в смеси присутствуют как комплементарные, так и некомплементарные цепи ДНК, то после ренатурации первых тем или иным способом определяют долю двуспиральных молекул. В настоящее время широко распространены методы, когда денатурированные молекулы ДНК одного типа закрепляются на нитроцеллюлозных фильтрах, которые затем помещают в раствор ДНК (или РНК) другого типа. После образования двуспиральных комплексов на фильтрах они легко могут быть отмыты от несвязав-шейся ДНК- Этот же подход используется при выявлении цепей ДНК (или РНК), комплементарных другим ДНК (или РНК), после разделения их электрофорезом в гелях. [c.30]

    Элонгация цепей РНК с помощью РНК-полимеразы специфически ингибируется антибиотиком актиномицином D как у прокариот, так и у эукариот (рис. 28-18). Плоская часть молекулы этого антибиотика интеркалирует в двойную спираль ДНК между соседними парами G- , деформируя матрицу ДНК. Эта локальная деформация мешает движению полимеразы вдоль матрицы. Таким образом, актиномицин D вызывает как бы заедание молнии . Поскольку актиномицин D ингибирует процесс элонгации РНК как в интактных клетках, так и в клеточных экстрактах, его использование оказалось очень удобным диагностическим средством для идентификации клеточных процессов, которые зависят от синтеза РНК. Другим интеркалирующим ингибитором является акридин, молекулы которого также имеют плоскую структуру. [c.913]

    Теперь, когда напряжение осталось позади, я отправился играть в теннис с Бертраном, сказав Фрэнсису, что ближе к вечеру напишу про двойную спираль. Луриа и Дельбрюку. Мы договорились также, что Джон Кендрью позвонит Морису и пригласит его посмотреть, что соорудили мы с Фрэнсисом. Ни Фрэнсису, ни мне не хотелось брать это на себя утром Фрэнсис получил от Мориса письмо, в котором тот сообщал, что берется теперь вплотную за ДНК и намерен особое внимание уделить постройке модели. [c.117]

    Регуляторные ДНК-связывающие белки прокариот вызывают заметные изменения конформации ДНК. При рентгеноструктурном исследовании комплекса регуляторного белка TFIHA со своим участком ДНК оказалось, что двойная спираль находится в А-форме. Другие изменения (изгибы и изломы двойной спирали) можно обнаружить с помощью электронной микроскопии, электрофореза ДНК-белковых комплексов, а также при действии нуклеаз. Связанный белок защищает от расщепления 15—30 п. о. в месте связывания и порождает два участка повышенной чувствительности к нуклеазам с обеих сторон от места связывания. Тонкий анализ мест гиперчувствительности в хроматине эукариот показал, что они имеют точно такую же структуру — две гипер-чувствительные точки, разделенные защищенны.м участком. [c.257]

    Каким образом клеткам удается достичь столь высокой степени точности в выборе нуж ного основания в процессах репликации и транскрипции, а также при спаривании кодона с антикодоном в процессе синтеза белка В ранних работах исследователи часто высказывали мнение, что специфичность спаривания оснований определяется исключительно образованием двух (или соответственно трех) водородных связей и стабилизацией за счет взаимодействия соседних участков спирали. Оказалось, однако, что свободная энергия образования пар оснований мала (гл. 2, разд. Г, 6), а дополнительная свободная энергия, обусловленная связыванием основания с концом уже существующей цепи, не в состоянии обеспечить специфичность спаривания. Исходя из современных энзимологических данных, можно предположить, что важную роль в обеспечении правильности спаривания играет сам фермент. РНК- и ДНК-полимеразы — достаточно крупные молекулы. Следовательно, связывающее место фермента может полностью окружить двойную спираль. Если это так, то нетрудно представить себе, что лроцесс выбора основания может протекать так, как это показано на рис. 15-5. На приведенном рисунке изображено гуаниновое основание матричной цепи молекулы ДНК, расположенное в месте наращивания комплементарной цепи (ДНК или РНК) с З -конца. Для образования правильной пары оснований соответствующий нуклеозидтрифосфат должен быть пристроен до того, как произойдет реакция замещения, в результате которой нуклеотид присоединится к растущей цепи. Предположим, что у фермента есть связывающие места для дезоксирибозного компонента матричного нуклеотида и для сахарного компонента включающегося нуклеозидтрифосфата, причем эти места расположены на строго оцределенном расстоянии друг от друга. Как показано на рис. 15-5, в каждом связывающем [c.212]

    В хромосоме Е. oli содержится ДНК длиной больше 1 мм, упакованная в клетке, длина которой пе превышает 2 мкм. Длина диплоидной ДНК, содержащейся в клетках человека, размер которых не превышает 20 мкм, достигает 1,5 м. Расплетание двойных спиралей ДНК в репликационных вилках требует быстрого вращения цепей (разд. А, 3,а). Хотя с чисто химической точки зрения процесс расплетания 3000 оснований за одну секунду не представляет проблемы, все же трудно представить себе, как две копии реплицируемой хромо-со.мы даже в клетках Е. oli могут разделяться, не запутываясь. Частично ответить на этот вопрос можно, если вспомнить о существовании ДНК-расплетающпх белков (разд. Д, 5, в), а также ДНК-релаксирую-щих , или раскручивающих , ферментов [185, 186] (см. также рис. 2-27). Важную роль играет при этом также организация хромосомы. [c.271]

    Как мы отмечали выше, ДНК может переходить в паракристалличе-скую А-форму (с наклонным расположением оснований и И парами оснований на виток). Напрашивается вывод, что и в природных условиях эта конформация не менее важна, чем В-форма. Хотя молекулы РНК обычно одноцепочные, они часто образуют шпильки — двухцепочечные участки, находящиеся в А-форме [71]. В-конформация в этом случае исключается присутствием -гидроксильных групп в рибозе РНК. Считается, что в клетках образуется также и переходная гибридная двойная спираль, составленная из молекул ДНК и РНК, которая, по всей видимости, тоже ограничена рамками А-формы. Следует отметить, что А-форма отличается от В-формы еще и тем, что имеет довольно большую ( — 0,8 нм в диаметре) полость вдоль оси спирали, а большая бороздка у нее более глубокая [71а]. В отличие от структуры, изображенной на рис. 2-23, в А-форме плоскости пар оснований не пересекают оси спирали. [c.134]

    Одним из типов двойных спиралей, которые получают искусственным путем, является гибрид ДНК—РНК. Оказалось, что молекулы информационной (матричной) РНК (мРНК) гибридизуются только с одной из двух разделившихся цепей ДНК, несущей участки, комплементарные мРНК. Метод гибридизации используется также для получения гетеродуплексов ДНК, в которых две цепи молекулы происходят от двух разных генетических линий одного и того же вида организмов. Известно, что некоторые мутации состоят в делеции (выпадении) или вставке одного или нескольких оснований в цепь ДНК. Гетеродуплексы, в которых одна из цепей нативная, а другая — со вставкой или делеци-ей, имеют по всей своей длине нормальную структуру по Уотсону—Крику, за исключением тех участков, где делеции или вставки нарушают комплементарность и образуются одноцепочечные петли (рис. 15-24). [c.143]

    Многие высокомолекулярные белки имеют спиральную структуру молекул (вторичная структура белка). Две спирали за счет образования многочисленных межмолекулярных водородных связей образуют двойную спираль. На один виток спирали приходится около четырех аминокислотных остатков (-КН-К-СО-) с различными по строению углеводородными радикалами К. Расстояние между витками спирали около 0,54 нм. Внутримолекулярная во дородная связь стабилизирует структуру каждой спирали. Структуру двойной спирали многих белков стабилизируют, кроме водородных связей, также дисульфидные связи 8-8, возникающие между соседними макромолекулами. Спирали белка могуг свтаться в клубок или образовывать нитевидные структуры — фибриллы. [c.43]

    Элонгация синтеза осуществляется ДИК-полимеразами. В клетках эукариот известно три типа ДНК-полимераз а, р и -у- Предполагается, что репликацию основной клеточной ДНК осуществляет полимераза а, репарацию повреждений — полимераза р, а репликацию ДНК митохондрий полимераза у. Так же как и у прокариот, в репликативной вилке одна из цепей является ведущей (лидирующей), а другая — отстающей (запаздывающей) (рис. 234). Лидирующая цепь синтезируется непрерывно, тогда как запаздывающая — фрагментами Оказаки. Эти фрагменты также инициируются короткими РНК, которые синтезируются, по-видимому, РНК-поли-меразой 1. В распространении реп.1икативной вилкм принимают участие дестабилизирующие двойную спираль ДНК-связывающие белки. [c.411]

    Двойная спираль ее развертывается с образованием пары простых спиралей, н вдоль каждой одинарной спирали возникает новая спираль. Каждая из образующихся спиралей идентична своей модели. Затем эти новые пары спиралей могут также развертываться, и процесс цовторяется. Главная трудность здесь заключается в том, что непонятно, каким образом такие длинные переплетенные структуры могут развертываться. [c.251]

    Основная научная область работ — молекулярная биология. Подтвердил гипотезу Ф. X. К,. Крика и Дж. Д. Уотсона о том, что молекулы ДНК представляют собой двойную спираль, Данные были получены нм методом рентгеноструктурного анализа (облучал рентгеновскими лучами волокна из ДНК, сформованные из вязкого раствора этого соединения). Разработал теорию фото- и термолю-минесцеиции (теория электронной ловушки). Занимается также биофизикой нервной системы. [c.501]

    Расхождение теоретической модели и экспериментальных данных хможно объяснить следующим образом. Поскольку отношение с /с равно 10 —10 и число лифосфатных групп в полиуридиловой кислоте составляет 10 —10 на макромолекулу, образованием петли полиуридиловой кислоты с олигоадениловой кислотой при их свивании можно пренебречь (для бесконечно длинных полимеров такое приближение неправильно). Следовательно, в двойной или тройной спиралях можно не принимать во внимание петли. В данных экспериментальных условиях полиуридиловая кислота, по крайней мере частично, образует двойную спираль. Следовательно, предложенное выше решение, подтвержденное в случае образования двойной спирали, верно также и в случае образования тройной спирали при кооперативной адсорбции на линейной цепи. [c.56]

    Таким образом, получены достоверные данные, что ДНК-полимераза катализирует синтез ДНК, которая является точной копией затравки. Эта особенность, а также тот факт, что дезоксирибонуклео-зид-5 -трифосфаты являются единственными известными соединениями, которые служат предшественниками ДНК, показывают, что ДНК-полимераза может катализировать синтез ДНК in vivo. Вполне вероятно, что двойная спираль ДНК расходится или раскручивается на односпиральные нити, которые действуют в качестве затравок, давая две новые двуспиральные молекулы ДНК, имеющие такое же строение. [c.477]

    Другой аспект гипотезы Уотсона-Крика состоит в том, что структура двойной спирали ДНК указывает способ, с помощью которого может быть точно воспроизведена содержащаяся в ДНК генетическая информация (рис. 27-13). Поскольку две цепи двойной спирали ДНК структурно комплементарны, их нуклеотидные последовательности несут комплементарную друг по отношению к другу информацию. Уотсон и Крик постулировали, что репликация ДНК в ходе деления клеток начинается с разделения двух цепей, каждая из которьк становится матрицей, определяющей нуклеотидную последовательность новой комплементарной цепи, образуемой с помощью репликативных ферментов. Была выска- зана мысль, что правильность репликации каждой из цепей ДНК должна обеспечиваться точным соответствием и стабильностью комплементарных пар оснований А=Т и 0=С в двух дочерних дуплексах, каждый из которых содержит одну цепь родительской ДНК и новро цепь, комплементарную этой родительской цепи. Было постулировано также, что каждая вновь образованная дочерняя двойная спираль попадает в дочернюю клетку без каких-либо изменений. В гл. 28 мы увидим, как эта гипотеза была экспериментально подтверждена. [c.864]

    Рис, 4.13. Жизненные циклы умеренного фага (на примере фага лямбда). После инфекции Es heri hia oli фагом лямбда происходит либо репродукция фага с последующим лизисом литический цикл), либо лизогенизация бактерии. ДНК фага представлена линейной двойной спиралью. В бактерии она замыкается в кольцо. Это кольцо может оставаться автономным или интегрироваться в бактериальную ДНК. В первом случае раззвертывается литический цикл. Замкнутая в кольцо ДНК реплицируется. В результате репликации по способу катящегося кольца получается цепочка из четырех копий фаговой ДНК. Гены фага запускают синтез и сборку белков головки и отростка и упаковку по одной копии ДНК в каждую головку фага. Головки спонтанно соединяются с отростками. При лизисе клетки-хозяина высвобождается около сотни зрелых фагов, которые в свою очередь могут инфицировать клетки. Однако кольцевая ДНК фага может также потерять свою автономию и включиться (интегрироваться) в ДНК хозяина, В этом случае клетка становится лизогенной. Латентный фаг, или профаг , реплицируется совместно с хромосомой клетки-хозяина. Лизогенная бактерия может неограниченно делиться, не подвергаясь лизису. Исключение (из хромосомы) фаговой ДНК, приводящее к лизису клетки, может произойти спонтанно или под действием индуцирующего фактора-облучения или мутагена. [c.149]


Смотреть страницы где упоминается термин Двойная спираль ДНК также: [c.185]    [c.187]    [c.30]    [c.291]    [c.251]    [c.624]    [c.393]    [c.23]    [c.47]    [c.237]    [c.251]    [c.267]    [c.541]    [c.450]    [c.337]    [c.261]    [c.868]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте