Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дрожжи, и хромосомы

Рис. 13-1. Четыре последовательные фазы клеточного цикла типичной эукариотической клетки. После фазы М, которая состоит в делении ядра (митоз) и цитоплазмы (цитокинез) дочерние клетки вступают в интерфазу нового цикла. Интерфаза начинается с фазы С1, в которой возобновляются интенсивные биосинтетические процессы, резко замедленные во время митоза. Фаза 8-это период синтеза ДНК она заканчивается, когда содержание ДНК в ядре удвоится и хромосомы полностью реплицируются (теперь каждая хромосома состоит из двух идентичных сестринских хроматид ). Затем клетка вступает в фазу Сг, которая продолжается до начала митоза, т.е. фазы М. В фазе М удвоившиеся хромосомы конденсируются и становятся хорошо видимыми в световой микроскоп. Ядерная оболочка разрушается (исключение составляют одноклеточные эукариоты, например дрожжи, - у них она остается интактной) сестринские хроматиды расходятся и формируют два новых ядра, а цитоплазма делится с образованием двух дочерних клеток, имеющих по одному ядру. Процесс цитокинеза завершает фазу М, и начинается интерфаза следующего клеточного цикла. На рисунке представлен типичный 24-часовой цикл, однако длительность клеточного цикла у высших эукариот сильно варьирует она может быть короче 8 часов, а у взрослых животных - больше года, причем различия в основном зависят от Рис. 13-1. Четыре последовательные <a href="/info/104719">фазы клеточного цикла</a> типичной <a href="/info/104367">эукариотической клетки</a>. После фазы М, <a href="/info/947978">которая состоит</a> в <a href="/info/218962">делении ядра</a> (митоз) и цитоплазмы (цитокинез) <a href="/info/510275">дочерние клетки</a> вступают в интерфазу <a href="/info/1499944">нового цикла</a>. Интерфаза начинается с фазы С1, в которой возобновляются интенсивные <a href="/info/509108">биосинтетические процессы</a>, резко замедленные во <a href="/info/98309">время митоза</a>. Фаза 8-это <a href="/info/1918752">период синтеза</a> ДНК она заканчивается, когда содержание ДНК в ядре удвоится и хромосомы полностью реплицируются (теперь каждая <a href="/info/1633422">хромосома состоит</a> из <a href="/info/1696521">двух</a> идентичных <a href="/info/510647">сестринских хроматид</a> ). Затем клетка вступает в фазу Сг, которая продолжается до начала митоза, т.е. фазы М. В фазе М удвоившиеся хромосомы конденсируются и становятся хорошо видимыми в <a href="/info/510624">световой микроскоп</a>. <a href="/info/106062">Ядерная оболочка</a> разрушается (исключение составляют <a href="/info/106037">одноклеточные эукариоты</a>, например дрожжи, - у них она остается интактной) <a href="/info/510647">сестринские хроматиды</a> расходятся и формируют два <a href="/info/1486410">новых ядра</a>, а цитоплазма делится с образованием <a href="/info/1696521">двух</a> дочерних клеток, имеющих по одному ядру. Процесс цитокинеза завершает фазу М, и начинается интерфаза следующего <a href="/info/99875">клеточного цикла</a>. На рисунке представлен типичный 24-часовой цикл, однако длительность <a href="/info/99875">клеточного цикла</a> у высших эукариот сильно варьирует она может быть короче 8 часов, а у взрослых животных - больше года, причем различия в основном зависят от

    Развитие методов генной инженерии привело к разработке системы трансформации для дрожжей, что способствовало более глубокому изучению у них механизма рекомбинации. Гибридные плазмиды, содержащие участки дрожжевой ДНК с известными маркерами, клонированные на векторе Е. соИ, могут быть введены в клетки дрожжей. При этом может происходить встраивание плазмидной ДНК в хозяйскую хромосому за счет рекомбинации между гомологичными последовательностями хромосомы и участка дрожжевой ДНК, входящего в состав плазмиды. При использовании плазмидной ДНК в замкнутой кольцевой форме удается с заметной частотой отобрать трансформированные дрожжевые клетки. В то же время введение двухцепочечного разрыва в дрожжевую [c.150]

    Для дрожжей характерно проявление двух альтернативных вариантов экспрессии определенной группы генов, которые определяют тип спаривания (а или а) индивидуальных клеток. Гаплоидные а-клетки способны узнавать и сливаться с гаплоидными а-клетками с образованием диплоидов (а/а). Диплоидные клетки могут расти в виде диплоидов или при голодании подвергаться мейозу с образованием гаплоидных спор с типами спаривания а или а. При мейозе маркеры а и а расщепляются как аллельные варианты по локусу типа спаривания, который картируется в хромосоме П1. Прорастание гаплоидной споры любого типа сопровождается делением клеток за счет почкования. После первого отпочкования клетка приобретает способность к переключению типа спаривания на противоположный как для себя самой, так и для следующей дочерней клетки в ходе второго деления. Таким образом, при каждом последующем делении происходит подобное переключение с частотой около 80%, что приводит к появлению диплоидного потомства гаплоидной споры (рис. 16.18). [c.234]

    Если вектор представляет собой плазмиду, реплицирующуюся независимо от хромосомы, то он должен содержать сайт инициации репликации, функционирующий в хозяйской клетке. Если же вектор предназначен для встраивания в хозяйскую хромосомную ДНК, то для обеспечения рекомбинации он должен нести последовательность, комплементарную определенному участку хромосомной ДНК хозяина (хромосомный сайт интеграции). Поскольку технически многие операции с рекомбинантными ДНК сложнее проводить в клетках эукариот, чем прокариот, большинство эукариотических векторов сконструированы как челночные. Другими словами, эти векторы несут два типа сайтов инициации трансляции и два типа селективных маркерных генов, одни из которых функционируют в Es heri hia oli, а другие — в эукариотических хозяйских клетках. Такие векторные системы экспрессии разработаны для дрожжей, насекомых и клеток млекопитающих. [c.136]


    В СТИ А и Европейском Союзе введены правила, регулирующие использование генетически модифицированных организмов (ГМО). Прочитана полная нуклеотидная последовательность хромосомы (хромосома III дрожжей) [c.216]

    Поскольку с помощью методов клонирования у дрожжей были выделены все элементы, необходимые для репликации и наследования хромосом — ориджины репликации, теломеры и центромеры,— то оказалось возможным создать искусственную хромосому, состоящую из соединенных в.месте двух теломер, центро.меры, последовательности ARS и ДНК наполнителя , роль которой может играть ДНК с любой последовательностью, например ДНК фага лямбда. Оказалось, что искусственная хромосома поддерживается в дрожжах, причем стабильность ее наследования не намного ниже, чем стабильность собственных дрожжевых хро.мосом. [c.72]

    Как известно, в дрожжах не наблюдается типичная картина митоза и нет метафазных хромосом (возможно, потому что у них очень маленькие хромосомы). По-видимому, с этим связано отсутствие гистона Н1 в дрожжах, несмотря на типичную нуклеосомную структуру хроматина. [c.248]

    В период перед митозом (размножением) весь хроматин концентрируется в хромосомах. Хромосомы, состоящие из молекул ДНК, являются хранилищем информации о свойствах клетки и синтезе всех белков, необходимых ей в течение жизни, за исключением белков митохондрий. При почковании или делении весь генный аппарат клетки удваивается, каждая клетка получает полный набор хромосом и вместе с ним всю сумму информации, обеспечивающую ее рост и развитие. В период деления ядра ядрышковой субстанции не обнаруживается. У дрожжей при расщеплении хромосом не наблюдается ресорбции ядерных мембран (явление эндомитоза). Количество хромосом в ядрах дрожжей зависит от родовых особенностей. [c.29]

    Вначале предполагали, что распространение РНК ограничивается растительными тканями, поскольку ее находили только в дрожжах. ДНК из зобной железы считали представителем нуклеиновых кислот животных тканей. После того как были разработаны более точные методы определения, РНК и ДНК были найдены в клетках практически всех типов. Оказалось, что ДНК содержится только в ядрах клеток, главным образом в хромосомах, в то время как РНК присутствует и в цитоплазме, и в ядре. [c.329]

    Следующий этап в эволюции механизмов митоза представлен группой организмов с веретеном внутри интактного ядра У дрожжей веретено состоит из непрерывного внутриядерного пучка микротрубочек, который гянется от одного полюса до другого и удлиняется в процессе митоза (см. рис. 13-75 и 13-16). У других видов, гаких как диатомовые водоросли, непрерывное веретено заменяется двумя обычными полуверетенами, у которых концы микротрубочек переплетаются, образуя зону перекрывания. И у дрожжей, и у диатомовых водорослей хромосомы соединены с веретеном своими кинетохорами и расхождение хромосом происходит примерно так же, как в клетках млекопитающих, если не считать того, что весь этот процесс обычно происходит внутри ядерной оболочки. Пока еще не удалось убедительно объяснить, почему у высших растений и животных вместо этого выработался митогический аппарат, требующий контролируемого и обратимого разрушения ядерной оболочки. [c.467]

    YA -векторы, которые также используются для клонирования больших фрагментов ДНК, представляют собой искусственную дрожжевую минихромосому. YA -вектор содержит центромеру, теломеры и точку начала репликации. В такой вектор можно встроить фрагменты чужеродной ДНК размером более 100 т. н. п., и такая минихромосома, введенная в клетки дрожжей, будет реплицироваться и вести себя аналогично другим дрожжевым хромосомам при митотическом делении. [c.41]

    Потеря хромосом у гибридов между клетками мыши и человека-это случайный процесс. То, какая хромосома сохранится и стабилизируется в гибридной линии,-дело случая. Однако из всей популяции гибридных клеток можно отобрать стабильные линии, содержащие желаемые гены и хромосомы, используя селекционные методы. Эти процедуры аналогичны тем, которые используются для отбора определенных классов рекомбинантов, образующихся при скрещиваниях бактерий или дрожжей. [c.298]

    Недавно была предложена модификация гель-электрофореза в агарозном геле, названная электрофорез в пульсирующем электрическом поле или пульс-электрофорез. С ее помощью удается разделять очень большие, можно сказать громадные молекулы ДНК. Обычный гель-электрофорез не позволяет разделить такие молекулы ввиду постоянства электрического поля, которое придает молекулам змеевидную конфигурацию. Обладающие такой конфигурацией молекулы движутся в гелях с постоянной скоростью вне зависимости от длины молекул. Если же направление электрического поля будет часто меняться, скорость движения молекул будет определяться их способностью переориентироваться согласно этому изменению. Такой процесс у больших молекул занимает значительно больше времени, вследствие чего они будут отставать. На гелях после пульс-электрофореза целые хромосомы бактерий или дрожжей выявляются в виде отдельных полос (рис. 4-64, В), и поэтому можно легко определить хромосомные перестройки. Более того, используя гибридизацию молекул клонированной ДНК данного геля для поиска комплементарных последовательностей в геле, удалось картировать множество генов у дрожжей (см. разд. 4.6.8). [c.233]


    Применение технологии рекомбинантных ДНК открывает широкие перспективы С помощью этих методов клетки бактерий, дрожжей и млекопитающих могут быть преобразованы в фабрики для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков или использовать их в качестве лекарственных средств. Кроме того, на технологии рекомбинантных ДНК основано получение высокоспецифических ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями. [c.247]

    Известно, что в мейозе и в митозе хромосомы упорядоченно расходятся по дочерним клеткам с помощью аппарата веретена, микротрубочки которого обеспечивают растягивание дочерних хромосом или гомологов к разным полюсам. Микротрубочки веретена прикрепляются к специальному участку хромосомы — кинетохору. Это белковый комплекс, который собирается на специализированной последовательности хромосомной Ц.НК — центромере. Молекулярные основы функционирования кинетохора пока не ясны. Методы молекулярного клонирования позволили выделить центромеры хромосом дрожжей. Вставление этих последовательностей в способные реплицироваться молекулы ДНК обеспечивает правильную сегрегацию последних в митозе у дрожжей. В случае дрожжей-сахаромицетов центромеры оказались сравнительно короткими (100—200 п. н.) сегментами ДНК. Центромеры делящихся дрожжей значительно больше (несколько тысяч п. н.) и, видимо, напоминают своим строением центромеры высших эукариот. Механизм упорядоченной сегрегации хромосом эукариот станет понятен, когда выяснится, как связанные с центромерой кинетохорные белки взаимодействуют с аппаратом веретена. [c.72]

    Искусственная дрожжевая хромосома, YA (Yeast artifi ial hromosome) Рекомбинантная ДНК, состоящая из дрожжевой плазмиды и интегрированных в нее центромерных и теломерных областей хромосом дрожжей и маркерных генов и содержащая несколько сайтов инициации репликации. [c.550]

    Но уже у плесневого гриба нейроспоры и у дрожжевых клеток такого сцепления не наблюдается здесь гены для последовательно действующих ферментов распределены в разных хромосомах. (Тем не менее пути обмена у всех трех организмов — сальмонелл, нейроспоры и дрожжей — совершенно идентичны.) Мы знаем, что элементы информации, контролирующие четыре цепи молекулы гемоглобина, не являются тесно сцепленными. Несмотря на это, различные ферменты работают вовсе не разобщенно, а, наоборот, вполне координированно. [c.290]

    Конверсия генов. Еще один относящийся к обсуждаемому предмету феномен давно известен в экспериментальной генетике под названием генной конверсии [122]. Различные данные, полученные при изучении глобиновых генов, позволяют предполагать наличие такого феномена и в геноме человека (разд. 4.3 см. также рис. 2.97). Генная конверсия есть не что иное, как модификация одного из двух аллелей другим, в результате чего гетерозигота Аа, например, становится гомозиготой АА. Винклер, который впервые обсуждал этот феномен более 50 лет тому назад, допускал физиологическое взаимодействие аллелей. Однако работы на дрожжах показали, что он связан с атипичной рекомбинацией. Данный процесс иллюстрирован на рис. 2.97. Кроссинговер всегда приводит к разрыву последовательности ДНК в сайте перекреста. Обычно разрыв репарируется, для чего последовательность сестринской хроматиды используется как матрица. Таким образом восстанавливается исходная двойная спираль. Однако иногда репарация осуществляется на матрице гомологичной хромосомы. В этом случае наблюдаются отклонения от обычной сегрегации. Генная конверсия имеет место и в соматических тканях, особенно у растений. Возможно, что в этом случае рекомбинационный процесс протекает атипично. Наличие генной конверсии не является неожиданным, поскольку спаривание гомологичных хромосом в соматических клетках и соматический кроссинговер характерны для многих видов [c.144]

    Для того, чтобы молекула ДНК могла сформировать активную хромосому, она должна обладать способностью реплицироваться, разделяться при митозе и сохраняться в ряду клеточных поколений. Применение метода рекомбинантных ДНК к клеткам дрожжей позволило вьщелить и определить те элементы, которые превращают последовательность нуклеотидов в хромосому. Два из трех этих элементов были идентифицированы при изучении небольших кольцевых молекул ДНК, самостоятельно реплицирующихся в клетках дрожжей Sa haromy os erevisiae. Оказалось, что для репликации такой молекулы необходима специальная последовательность, которая выполняет роль участка инициации репликации ДНК (называемого также точкой начала репликации). В каждой хромосоме дрожжей таких участков несколько. Второй элемент, необходимый для функционирования последовательности ДНК как хромосомы, называется центромерой. Центромера соединяет содержащую ее молекулу ДНК с митотическим веретеном во время М-фазы (см. разд. 13.5.3). В каждой хромосоме дрожжей имеется только одна центромера. Если участок, выполняющий роль центромеры, встроить в плазмиду, то при делении каждая дочерняя клетка дрожжей обязательно получит одну из двух копий вновь реплицировавшейся молекулы плазмидной ДНК. [c.96]

    Таким образом, потерянная теломерная ДНК восстанавливается, что дает возможность линейной хромосоме реплицироваться полностью. На рис. 9-4 представлены схемы действия трех элементов последовательности ДНК, которые обеспечивают стабильность линейной хромосомы в клетке дрожжей. Но-видимому, такие же элементы необходимы и для поддержания стабильности хромосом в клетках человека. Однако до сих пор участки инициации репликации ДНК и последовательности центромер человека охарактеризованы далеко не полностью, а соответствующие дрожжевые последовательности в клетках высших эука-риот, как оказалось, не функционируют. [c.97]

    Как только каждая хромосома расщепилась в ответ на анафазный сигнал, две ее хроматиды начинают двигаться к противоположным полюсам веретена, где они будут включены в ядра новых клеток. По-видимому, это движение - результат двух независимых процессов, происходящих в веретене (рис. 13-59). Первый из них состоит в перемещении хроматид к полюсам и связан с укорочением микротрубочек, прикрепленных к кинетохорам обычно этот процесс называют анафазой А. Второй процесс - раздвигание самих полюсов, связанное с удлинением полярных микротрубочек и называемое анафазой В. Эти два процесса можно различить по их избирательной чувствительности к некоторым ядам. Например, низкая концентрация хлоралгидрата предотвращает раздвигание полюсов и удлинение полярных микротрубочек (анафаза В), но не действует ни на микротрубочки кинетохоров, ни на движение хроматид к полюсам (анафаза А). Относительный вклад каждого из этих процессов в окончательное расхождение хромосом существенно различен в зависимости от организма. Например, у клеток млекопитающих анафаза В начинается вскоре после начала движения хроматид к полюсам и заканчивается, когда веретено достигает длины в 1,5-2 раза больше метафазной. У некоторых других клеток, таких как дрожжи, анафаза В начинается только после того, как хроматиды доходят до места своего назначения, а у некоторых простейших анафаза В преобладает и веретено становится в 15 раз длиннее, чем в метафазе. [c.452]


Смотреть страницы где упоминается термин Дрожжи, и хромосомы: [c.72]    [c.72]    [c.69]    [c.103]    [c.103]    [c.267]    [c.69]    [c.103]    [c.103]    [c.27]    [c.462]    [c.321]    [c.8]    [c.9]    [c.293]    [c.354]    [c.404]    [c.475]    [c.321]    [c.299]    [c.322]    [c.339]    [c.96]    [c.98]    [c.446]    [c.34]    [c.138]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Дрожжи

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте