Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки рибосомные взаимодействие с рибосомной

    Рибосомная РНК — высокополимерное соединение, молекула ее содержит 4000—6000 нуклеотидов. Она в соединении с белком образует внутри клетки особые субмикроскопические гранулы— рибосомы. Рибосома является фабрикой белкового синтеза , куда в качестве сырья доставляются аминокислоты. Установлено, что роль матрицы принадлежит особому типу рибонуклеиновых кислот — информационной РНК. Размер ее молекул широко варьирует, имея в среднем от 500 до 1500 нуклеотидов. и-РНК синтезируется на молекулах ДНК в ядре клетки. Из ядра они проникают в протоплазму к рибосомам и, взаимодействуя с ними, участвуют в синтезе белка. Если молекулы й-РНК служат матрицей для синтеза белков, то они должны содержать информацию о данном белке, зашифрованную определенным кодом. Но все различие между видами информационной РНК заключается в разной последовательности чередования четырех азотистых оснований (У, Ц, А и Г). Однако и белки, несмотря на их огромное многообразие, отличаются друг от. друга в своей первичной структуре только порядком расположения аминокислот. Это привело к заключению, что последовательность расположения четырех видов азотистых оснований на молекуле РНК определяет последовательность расположения 20 видов аминокислот в полипептидной цепи синтезируемого белка, или, другими словами, что каждая из 20 аминокислот может занять на данной матрице только определенное место кодированное сочетанием нескольких азотистых оснований. [c.123]


    Сигнальный пептид, состоящий обычно из 15 — 20 гидрофобных аминокислот, вступает через рибосомный рецепторный белок во взаимодействие с эндоплазматическим ретикулумом и начинает локально-специфический синтез белка. Еще до заверщения синтеза он отщепляется сигнальной пептидазой от остальной цепи. Полипептидная цепь секреторного белка выводится через систему каналов эндоплазматического ретикулума и вслед за этим сворачивается в нативную конформацию. [c.396]

    Рибосомальные РНК составляют примерно 657о сухого веса рибосом, белки — 35%. Эти РНК разделяются на 3 класса 23—28 S, м. м. 1 10" 1G—18 S, м. м. < 1 10, и низкомолекулярные РНК—5S, м. м. 40000. Вероятно, молекулы белка взаимодействуют с неспирализованными участками рРНК, рибонук-леопротеидный комплекс сворачивается в компактную структуру рибосомной субъединицы. Б 70 S-рибосоме содержится примерно 65 полипептидных цепей со средней молекулярной массой 65 000. Б 30 S-частицах имеется 19—20 сортов белков, в 50 S-частицах их более 50. [c.272]

    Во всех до сих пор рассмотренных примерах регуляции транскрипции на взаимодействие РНК-полимеразы с промотором влияли белки. Регуляция синтеза рибосомных РНК дает пример того, что с РНК-полимеразой могут непосредственно реагировать и низко молекулярные эффекторы. [c.154]

    Кроме м-РНК в рибосомах содержится р-РНК, функции которой неизвестны. Возможно, что р-РНК может играть роль матрицы в синтезе структурных белков. Допускают также, что р-РНК является матрицей для синтеза структурных белков рибосом, но определенных доказательств этому пока нет. Рибосома прикрепляется к м-РНК в специальной точке на малой рибосомной субъединице возможно, что одна цепь м-РНК вступает во взаимодействие с несколькими рибосомами (полирибосомы). Механизм работы рибосомы остается и до сих пор во многих отношениях загадочным, но несомненно, что рибосома движется вдоль м-РНК. При этом рост полипептидной белковой цепи происходит так, что [c.392]

    Итак, благодаря избирательности бифуркационных флуктуаций и их строгой согласованности структурная самоорганизация белковой молекулы приобретает детерминистические черты (случайность порождает необходимость). Из конформационно жестких и взаимодействующих с ними лабильных фрагментов возникают нуклеации, которые через ряд чисто случайных, но тем не менее неизбежных и строго последовательных событий входят в домены или в нативную трехмерную структуру белка. Весь процесс самосборки пространственной структуры не требует времени больше, чем затрачивается на рибосомный синтез белковой цепи. Уникальность бифуркаций, порядок их возникновения и устойчивый конструктивный характер обусловлены конкретной, отобранной в ходе эволюции аминокислотной последовательностью. В то же время рассматриваемая модель свертывания не исключает образование "неправильных" промежуточных состояний, содержащих структурные элементы, отсутствующие в конечной конформации. Более того, поскольку в основу модели положен беспорядочно-поисковый механизм, осуществляющий сборку белка методом "проб и ошибок", то возникновение непродуктивных состояний белковой цепи становится неизбежным. Однако они нестабильны, так как продуктивные состояния, появляющиеся в результате бифуркационных флуктуаций, всегда более предпочтительны по энергии. К обсуждению этого вопроса вернемся в главе 17 при количественном описании механизма ренатурации панкреатического трипсинового ингибитора. [c.98]


    Другие рибосомные белки, взаимодействующие с рибосомной РНК, Требуют для образования достаточно прочных комплексов с ней также и присутствия хотя бы одного или нескольких сердцевинных РНК-связывающих белков. Здесь возможны два случая либо соб- [c.101]

    Не исключено, что некоторые рибосомные белки могут не иметь собственного сродства к рибосомной РНК и удерживаться только за счет белок-белковых взаимодействий. [c.102]

    В настоящее время показано, что фосфорилирование eIF-2 оказывает эффект на способность фактора взаимодействовать со специальным крупным белком (молекулярная масса около 300000 дальтон), относимым теперь к факторам инициации и обозначаемым как eIF-2B (он же — анти-НС1). Согласно последней принятой схеме (рис. 124), eIF-2 GDP, освобождаемый из рибосомного инициаторного комплекса на стадии присоединения 60S субчастицы, взаимодействует с eIF-2B (на схеме внизу). В таком eIF-2B eIF-2 комплексе ГДФ, связанный с eIF-2, [c.260]

    Стрептомицин взаимодействует с 30S рибосомной субъединицей. Для блокирования синтеза белка требуется 1 молекула антибиотика на 1 рибосому. [c.229]

    Особый интерес представляют, конечно, взаимодействия рибосомных белков с высокополимерными рибосомными РНК (16S и 23S РНК прокариот или 18S и 28S РНК эукариот), ибо они представляют собой основной ковалентный каркас и структурное ядро рибосомных субчастиц. По-видимому, больщинство рибосомных белков контактируют и так или иначе взаимодействуют с высокополимерными рибосомными РНК. Однако среди них можно выделить специальные сердцевинные РНК-связывающие белки, которые прочно взаимодействуют с соответствующей рибосомной РНК, более или менее независимо от других белков. Такими белками малой (30S) рибосомной субчастицы Е. соИ, независимо вступающими в комплекс с 16S РНК, являются S4, S7, S8, S15, S17 и S20. Каждый из них связывается только со специфическим местом на 16S РНК, узнавая его нуклеотидную последовательность и пространственную структуру. Эту последовательность можно выявить таким путем изолированный белок добавляется к рибосомной РНК, в результате чего образуется специфический белок-РНК-комплекс комплекс переваривается рибонуклеазой, так что негидролизованной остается лищь та часть нуклеотидной последовательности, которая закрыта белком эта защищенная последовательность определяется и, таким образом, идентифицируется. Другой метод локализации белков на первичной структуре рибосомной РНК — ковалентная сщивка (например, фотоиндуци-рованная) белка с РНК непосредственно в составе рибосомы, с последующим удалением несшитых белков, перевариванием РНК с помощью РНКазы и идентификацией сшитого олигонуклеотида. Расположение мест связывания вышеуказанных шести белков вдоль цепи 16S РНК схематически показано на рис. 59, а. Видно, что белки [c.100]

    Помимо сильно упакованных молекул РНК в состав 308-субча-стицы входит приблизительно 21 белковая молекула, различающаяся по аминокислотному составу и по аминокислотной последовательности (табл. 15-5). Многие из этих белков (их обозначают символами S1, S2, S3 и т.д.) имеют сравнительно небольшой мол. вес. Кроме того, многие из них обладают сильно выраженными основными свойствами. Они содержат большое число остатков лизина и аргинина, которые бесспорно обусловливают взаимодействие этих белков с молекулами РНК. Вместе с тем в состав 305-субчастиц входит также несколько кислых и нейтральных белков. Рибосомная 508-субчастица содержит - 34 различных белка, причем в одной субчастице может находиться несколько молекул белка одного и того же типа. Белковый состав рибосом может подвергаться изменениям, и установить его точно — задача довольно трудная. Большая часть белков (обычно их называют структурными единицами) присутствует в соотношении 1 1. Другие белки могут отсутствовать в некоторых рибосомах. Аналогично дополнительные копии некоторых субчастиц могут содержаться лишь в части рибосом. В процессе синтеза белка с функционирующими рибосомами временно может связываться ряд других белков. [c.228]

    Рибосомный белок гороха содержит значительное количество основных аминокислот, что естественно для белка, который должен взаимодействовать с отрицательно заряженными фосфатными группами рибосомной РНК. Рибосомный белок содержит также значительные количества дикарбоновых аминокислот — глутаминовой [c.21]

    Адапторная функция тРНК определяется ее способностью специфически взаимодействовать с определенными субстратами. Укажите их а) иРНК б) ДНК в) аминоацил-тРНК-синтетаза г) белки рибосомных частиц д) рРНК. [c.320]

    Белок-дисульфидная изомераза в значительном количестве присутствует в эндоплазматических ретикулумах различных типов клеток эукариот. Ее активность хорошо коррелирует с уровнем синтеза секреторных белков [185]. Химические перекрестные модификации фермента свидетельствуют об избирательности его взаимодействий с синтезируемыми на рибосомах в эндоплазматическом ретикулуме полипептидными цепями иммуноглобулинов [186]. Введение очищенной изомеразы в микросомы, предварительно освобожденные от нее щелочной или детергентной обработкой, вновь восстанавливает котрансляционное образование дисульфидных связей при внеклеточном рибосомном синтезе белковой цепи [184]. [c.413]

    Ясли рибосомные частицы инкубировать при высоких ионных силах, йддерживая также и достаточно высокую концентрацию Mg2+, то компактность частиц сохраняется, но наблюдается диссоциация рибосомных лко5. Очевидно, что это происходит прежде всего как результат деЯабления удержания белков на РНК вследствие подавления их электростатических взаимодействий. Как в условиях инкубации при достоянной высокой концентрации соли, так и при ступенчатом повышении ионной силы имеет место последовательное отщепление Групп белков с образованием серии белок-дефицитных производных, Т. е. ступенчатая разборка рибосомных частиц. [c.127]


    И малая, и больщая рибосомные субчастицы могут диссоциировать на составляющие молекулы РНК и белка. Более того, даже после отделения друг от друга молекулы всех РНК и белков способны восстанавливать исходную функционально активную рибосомную субчастицу, если их смещать в соответствующих условиях. Это означает, что вся информация о сборке мультимерного комплекса заключена в структуре его компонентов. Эксперименты по реконструированию рибосом позволяют лучще понять характер взаимодействия между этими компонентами и определить возможный порядок, в котором собираются белки и РНК in vivo. Кроме того, в подобных экспериментах можно проверить совместимость эквивалентных РНК или белковых субчастиц из различных источников (например, из отдаленно родственных прокариот или из прокариот и эукариот). Далее, с помощью этого метода можно оценить способность мутантных РНК или белков к взаимодействию с восстановлением структуры рибосом и проявлению различных видов аьсгивности, присущих реконструированным рибосомам. [c.142]

    Использованию ферментов в качестве катализаторов для реакции соединения пептидов и в настоящее время уделяется большое внимание. Катализ образовании пептидов при биосинтезе белка осуществляет фермент перти-дилтрансфераза. Так как этот фермент взаимодействует с протеиногенными аминокислотами независимо от природы боковой цепи, теоретически он представляет собой идеальный катализатор для реакций целенаправленного синтеза пептидов. Пептидилтрансфераза в сложной рибосомной системе структурно тесно связана со всеми другими составляющими, кроме того, на стадии элонгации во время биосинтеза белка одновременно действуют также другие факторы. Поэтому вероятность того, что выделенный из естественной среды фермент вообще будет способен к катализу реакции синтеза пептидов, очень мала. Никакого выхода в практику пептидного синтеза не получил также изученный Липманном механизм биосинтеза пептидных антибиотиков, который проходит с участием определенных ферментов. [c.166]

    Рибосомные белки характеризуются в основном глобулярной компактной конформацией, с развитой вторичной и третичной структурой. Одно время широко распространилось убеждение, что рибосомные белки являются особенными, не похожими на обычные глобулярные белки сообщалось об их сильно вытянутой или сильно рыхлой конформации, иногда разветвленной по всей рибосомной субчастице. Однако скоро стало понятно, что рыхлые конформации изолированных рибосомных белков представляют собой артефакт, являющийся следствием низкой стабильности их нативной конформации вне рибосомы. Конформация рибосомных белков стабилизируется при взаимодействии с РНК и друг с другом. Тем не менее, при соблюдении определенных условий большинство рибосомных белков можно выделить в индивидуальном виде в компактной конформации, по-видимому, близкой к нативной. Оказалось возможным также продемонстрировать компактность ряда рибосомных белков in situ, в составе рибосомной частицы. [c.95]

    Низкомолекулярная рибосомная РНК —5S РНК — взаимодействует с рядом белков 50S субчастицы, образуя с ними комплекс, локализующийся в районе центрального протуберанца (см. предыдущую главу). Три белка —L5, L18 и L25 —образуют довольно прочный нуклеопротеидный комплекс с 5S РНК. С этим комплексом более лабильно взаимодействуют также белки L2, L3, L15, L16, L17, L21, L22, L33 и L34. Этот большой комплекс уже проявляет некоторые [c.99]

    Условиями для самосборки служат умеренная ионная сила (ниже 0,5), достаточная концентрация Mg2+ (от 10 до 30 мМ) и повышенная температура. М. Номура с сотр., осуществившие полную реконструкцию биологически активных 30S субчастиц Е. соН из индивидуальных РНК и белка, использовали 0,3—0,3 J М КС1 с 20 мМ Mg b, инкубируя смесь при 40°С в течение 20 мин. Они нашли, что оптимальной является ионная сила около 0,4. Очевидно, более высокие ионные силы подавляют взаимодействия белков с РНК, а при более низких ионныу силах возрастает вклад конкурирующих неспецифических взаимодействий основных белков с отрицательно заряженным полинуклеотидом. Относительно высокая концентрация Mg2+ необходима, по-видимому, прежде всего для поддержания третичной и вторичной структуры РНК, служащей каркасом для размещения белков. Вообще, следует отметить, что так называемый буфер для реконструкции Номура служит в то же время средой, в которой рибосомная РНК достаточно компактна в изолированном состоянии и поддерживает свою специфическую форму. Повышенная температура оказывается также очень важной для реконструкции и требуется, как считают, для облегчения структурной перестройки промежуточного рибонуклеопротеидного комплекса от менее компактной к более компактной конформации. [c.130]

    Репрессия трансляции под действием двуспиральной РНК. В лизате ретикулоцитов двуцепочечные РНК, включая как двуспиральные фрагменты вирусного происхождения (полиовируса или реовирусов), так и синтетические комплексы поли(А) поли(и) или поли(1) поли(С), вызывают ингибирование синтеза белка в присутствии гемина, похожее по всем признакам на репрессию, вызываемую отсутствием гемина. Двуцепочечная РНК, которая оказывает такое воздействие на трансляцию, должна состоять не менее, чем из 50 пар нуклеотидных остатков. Оказалось, что, так же как и в результате отсутствия гемина, в присутствии такой двуцепочечной РНК происходит активация ингибитора инициации, обозначаемого как dsl, и этот ингибитор тоже является протеинкиназой, фосфорилирующей а-субъединицу eIF-2. В отличие от H I, однако, dsl связан с рибосомными частицами и представляет собой белок с молекулярной массой около 67000 дальтон. Активация ингибитора требует АТФ и происходит как результат автофосфорилирования белка. Именно автофосфорилирование индуцируется взаимодействием белка с двуцепочечной РНК. По-видимому, механизм репрессии инициации под действием активированного dsl во всем аналогичен таковому в случае H I и заключается в изменении взаимодействия eIF-2 в результате его фосфорилирования с дополнительным белком eIF-2B (см. выше). [c.262]

    Синтез рибосомных РНК строго скоординирован с синтезом рибосомных белков так, что в клетках в заметных количествах не обнаруживается ни свободных рибосомных РНК, ни свободных рибосомных белков. Скорость образования рибосом регулируется в быстро растущих на богатых питательных средах культурах эта скорость высокая, в медленно растущих на бедных средах — низкая. Механизмы координированной регуляции синтеза компонентов, рибосом отличаются большой сложностью и изучены еще недостаточно. Здесь будет рассмотрен только один элемент этой регуляции, основанной на взаимодействии с РНК-полимеразой низкомолекулярного эффектора гуанозинтетрафосфата. Этот нуклеотид синтезируется на рибосомах в условиях аминокислотного голодания клеток. Накопление гуанозинтетрафосфата в голодающих по аминокислотам клеткам приводит к значительному замедлению синтеза рибосомных РНК и мРНК рибосомных белков и может стимулировать транскрипцию оперонов биосинтеза аминокислот. [c.154]

    Конформация РНК значительно менее определенна. Известно, что вирусная РНК может существовать либо в форме двойной спирали, либо как однониточная форма. Информационная РНК существует в форме одной нити. Нативная рибосомная РНК связана с белком, как уже указывалось на с. 400. Обе эти РНК, по-видимому, имеют свернутые структуры, в которых основания в некоторой степени связаны стекинг-взаимодействием (см. разд. 15.3 и 15.6). Конформация тРНК была объектом многих исследований [c.403]


Смотреть страницы где упоминается термин Белки рибосомные взаимодействие с рибосомной: [c.230]    [c.112]    [c.241]    [c.328]    [c.107]    [c.434]    [c.20]    [c.58]    [c.154]    [c.165]    [c.255]    [c.53]    [c.469]    [c.123]    [c.124]    [c.144]    [c.218]    [c.241]    [c.253]    [c.165]    [c.255]    [c.494]    [c.579]    [c.960]   
Молекулярная биология Структура рибосомы и биосинтез белка (1986) -- [ c.99 , c.100 , c.101 , c.102 ]




ПОИСК







© 2024 chem21.info Реклама на сайте