Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиоактивность минеральных вод

    Исследование Пьером Кюри (совместно с А. Лабордом) радиоактивности минеральных вод и газов, выделяемых минеральными источниками. Начало исследования физиологического действия лучей и эманации радия (совместно с Беккерелем). [c.321]

    Профессор Московского университета А. П. Соколов разработал компенсационный метод определения радия по радону, который и в настоящее время является точным методом определения малых количеств радия и радона. Ему и его ученикам мы обязаны систематическими исследованиями радиоактивности минеральных вод и отчасти грязей и атмосферного воздуха в некоторых районах России. А. П. Соколов первым в мире отметил влияние ионизации и радиоактивности воздуха на организм человека и первый в России начал изучение ионизации воздуха и газов минеральных источников. [c.11]


    Встречается в вулканических газах, природных газах, в радиоактивных минералах, в воде многих радиоактивных минеральных источников и в воздухе (0,0005% по объему вблизи земной поверхности). [c.11]

    Осн. работы относятся к обл. радиоактивности и к радиохимии. Применил (1917) впервые в России и одним из первых в мировой науке метод изотопных индикаторов (меченых атомов) для определения р-римости некоторых соед. тория. Исследовал (1914—1916) радиоактивность минеральных вод, лечебных грязей и пород на Кубани и в Крыму. Установил (1921) колич. зависимость между скоростью выделения эманации радия из минералов и ее концентрацией в окружающей среде. Совм. с рядом сов. ученых выдвинул (1921— [c.417]

    С помощью этого метода концентрируют сульфатные щелока, радиоактивные сточные воды, солевые растворы. Чтобы предотвратить отложение солей на теплообменных поверхностях, уменьшить коррозию оборудования, при выпаривании солевых стоков иногда вводят в стоки жидкий гидрофобный теплоноситель (например, парафины, минеральные масла, силиконы). Уменьшить расход теплоносителя на выпаривание можно, используя установки мгновенного испарения (УМИ). В этом случае вода нагревается в выносных теплообменниках до температуры кипения, затем она поступает в камеры испарения под более высоким давлением. Испарение происходит с поверхности воды и с поверхности капель, образующихся в результате диспергирования жидкости. [c.490]

    В книге подробно рассмотрены вопросы жидкостной экстракции, широко применяемой в современной технологии наряду с другими основными технологическими процессами, например при получении редких металлов, нашедших применение в качестве полупроводников, в производстве естественных радиоактивных веществ, при селективном рафинировании минеральных масел, при выделении ароматических соединений из нефтяных продуктов, при получении фенола в коксохимической промышленности, при рафинировании пищевых масел и жиров, в производстве антибиотиков, витаминов и т. п. Кроме того, в книге излагаются методы технологического расчета экстракционных аппаратов, что позволяет проектировщикам решать проектные задачи, а научным работникам—организовывать исследовательские работы. [c.2]

    Природные растворы представляют собой сложные физико-химические системы, которые образуются в различных условиях самопроизвольно при взаимодействии воды как растворителя с горными породами, минералами, продуктами жизнедеятельности животных и растительных организмов. К природным растворам относятся как пресные (с содержанием сухого остатка < 1 г л), так и минеральные воды (минерализация > >1 г1л). Последние отличаются более высоким содержанием растворенных газов, химических элементов и соединений, радиоактивностью, иногда повышенной температурой, достигающей у вод гейзеров 100° С. Соленость воды Мертвого моря в 7,5 раза больше солености морской воды. Минеральные воды, в состав которых.входят йод, бром, углекислота, сероводород, радон и др., оказывают определенное физиологическое воздействие на человеческий организм и применяются как лечебное средство. [c.159]


    Содержание радия, урана и тория в природных водах значительно меньше и в среднем составляет около 1—10 10 кг радия, 0,6 — 8 10 кг урана и 0,5 10 кг тория на м . Природные воды содержат также растворенный в них радиоактивный газ — радон. Радиоактивные воды применяются для лечебных целей — минерально-радиоактивные воды (Цхалтубо, Пятигорск, Боржоми, Ижевск и др.) используются для питья и ванн. [c.75]

    Природным минеральным анионообменником является апатит [Сав(Р04)зЮН. Минерал апатит содержит основной фосфат кальция известен также его аналог — фторапатит Са5(Р04)з]р, в котором гидроксильные группы замещены фтором. Гидроксильные группы апатита замещаются фтором при обработке растворами, содержащими ионы фтора этот процесс ионного обмена обратим. В апатитах также может протекать и катионный обмен его используют для обработки радиоактивных сбросных растворов, содержащих Sr. [c.41]

    Последнее время усиленно изучается обменная сорбция К , Rb" и s на ионитах минерального происхождения, таких, как цеолиты, анальцим фосфат, молибдат и вольфрамат циркония. В ряде случаев было показано, что калий, рубидий и цезий лучше разделяются на минеральных ионитах, чем на органических. Минеральные иониты благодаря своему регулярному и относительно жесткому каркасу обладают по сравнению со смолами более высокой селективностью к отдельным щелочным металлам, превосходят органические иониты по устойчивости н действию высокой температуры и радиоактивного излучения. К сожалению, минеральные иониты не отличаются достаточной химической стойкостью и часто склонны к пептизации, что, естественно, ограничивает область их применения. [c.145]

    Иными словами, в 1 м воздуха содержится 9,3 л Аг, 16 мл Ne, 5 мл Не, 1 мл Кг, 0,08 мл Хе и лишь 1—2 атома Rn в 1 см . Гелий, являющийся продуктом радиоактивного распада, встречается в некоторых природных газах, в водах минеральных источников, а также в окклюдированном виде в минерале клевеите. Все эти элементы (кроме аргона) принадлежат к редким. Это обстоятельство, а также их исключительная инертность послужили причиной их сравнительно позднего открытия. В космосе гелий наряду с водородом является наиболее распространенным элементом (76 масс, долей, % Н и 23 масс, доли, % Не от общей массы вещества во Вселенной). Источником космического гелия являются термоядерные реакции, протекающие на определенной стадии эволюции звезд. Не случайно поэтому гелий впервые был открыт (1868) методом спектрального анализа на Солнце. На Земле он был обнаружен спустя почти 30 лет. [c.484]

    Молоко является продуктом профилактического питания, повышающим сопротивляемость организма неблагоприятным факторам производственной среды благодаря нормализующему влиянию на ряд обменных процессов и функций организма. Молоко показано выдавать лицам, работающим в условиях постоянного контакта с физическими производственными факторами (радиоактивные вещества, в открытом виде) и токсическими веществами при их производстве, переработке и применении, вызывающими нарушение функции печени, белкового и минерального обмена, резкое раздражение слизистых оболочек верхних дыхательных путей. [c.164]

    Присутствие гелия установлено во всех минералах, обладающих радио aliTHBHbiMn свойствами. Это объясняется тем, что а-лучи, испускаемые радиоактивными элементами, являются ионизированным гелием. Некоторые радиоактивные минералы, как, например, торианит с острова Цейлона, может содержать от 8 до 10,5 мл гелия на 1 г. Небольшое количество аргона также было открыто в некоторых радиоактивных минералах. Радон содержится в ряде радиоактивных минеральных вод. [c.635]

    Основные научные исследования относятся к геохимии горных пород, гидрохимии, а также химии и технологии редких и рассеянных элементов. Один из основоиолож-ников нового раздела геохимии — аэрохимии. Под его руководством проводилось изучение строения и физических свойств метеоритов. Одним из первых в России начал (с 1910) исследование радиоактивности минеральных вод и горных пород. Предложил метод измерения радиоактивности лечебных грязей. [c.86]

    В Академии наук В. И. Вернадским была организована радиологическая лаборатория, в которую он привлек молодого тогда химика В. Г. Хлопина, впоследствии возглавлявшего радиохимические исследования в Советском Союзе. В Московском университете в этой области работал А. П. Соколов с сотрудниками, и нельзя не отметить исследования Вл. И. Сницына, которые первоначально касались изучения радиоактивности минеральных источников и пород. В 1917 г. он опубликовал Материалы к изучению химии тория , которые представляют интерес в связи с применением изотопов тория (Вс1ТЬ и иХх) в качестве индикаторов при определении растворимости соединений тория. Безвременная смерть оборвала плодотворную научно-исследовательскую деятельность Вл. И. Спицына в 1923 г. [c.35]

    В сухом остатке некоторых буровых вод количество Na I достигает 90%. Кремневая кислота (SiOa), а также окислы AI2O3, Ре Оз встречаются в них в виде коллоидных растворов. Иногда буровые воды содержат сероводород. Имеются указания на присутствие в некоторых буровых водах радиоактивных элементов, причем радиоактивность таких вод по своей интенсивности может приближаться к радиоактивности минеральных источников. Содержание солей органических кислот (жирных и нафтеновых) в буровых водах чрезвычайно мало. [c.110]


    Представление об отсутствии корреляции между резистентностью организма и уровнем радиации в среде его обитания не всегда оказывается верным. Так, показано, что микроорганизмы, выделенные из радиоактивных минеральных источников, в 3— 10 раз более резистентны к радиации, чем организмы тех же видов, выделенные из нерадиоактивной воды (Киселев и др., 196Г). [c.477]

    До последнего времени радиоактивность минеральных вод определялась главным образом для терапевтических целей так как эти измерения имеют лишь незначительное геохимическое значение, то только некоторые из них будут здесь рассматриваться. Обыкновенные источники, питаемые грунтовыми водами, обнаруживают обычно только слабую радиоактивность. Более радиоактивными являются многие горячие источники и другие глубинные струи, которые обогащены не обыч-йыми минеральными компонентами. Здесь приводится таблица определений радиоактивности для некоторых наиболее известных минераль- [c.83]

    Применение соединений цинка и его аналогов весьма разнообразно. Так, их сульфиды используются в производстве минеральных красок, Hg lj сулема), Hga lj (каломель) и другие препараты ртути, а также цинка — в медицине. Особым образом приготовленный кристаллический ZnS обладает способностью после предварительного освещения светиться в темноте. На этом основано его применение при работе с радиоактивными препаратами и в рентгенотехнике. Сульфид кадмия dS применяется в качестве фотосопротивления, т. е. вещества, электросопротивление которого зависит от интенсивности падающего на него света. Концентрированный раствор Zn lj, растворяющий клетчатку, используется в производстве пергамента. [c.638]

    Загрязнение гидросферы. Исключительно сильное отрицательное влияние на природу оказывают также жидкие или растворимые в воде загрязнители, попадающие в виде промышленных, коммунальных и дождевых стоков в реки, моря и океаны. Объем сточных вод, сбрасываемых в водоемы мира, ежегодно составляет 700 кмЗ и к концу XX в. удвоится. Как правило, для нейтрализации стоков требуется их 5 -12-кратное разбавление пресной водой. Следовательно, при современных темпах развития производства и непрерывно растущем водо-потреблении (5 - 6% в год) в самом ближайшем будущем человечество полностью исчерпает запасы пресных вод на Земле. К наиболее водоемким и крупным загрязнителям водоемов относятся химическая, нефтехимическая, нефтеперерабатывающая, нефтяная, целлюлозно-бумажная, металлургическая и некоторые другие отрасли промышленности, а также сельское хозяйство (наприме1>, для целей орошения). Со сточными водами НПЗ в водоемы попадают соленая вода ЭЛОУ, ловушечная нефть, нефтешламы, нефтепродукты, химические реагенты, кислые гудроны, отработанные щелочные растворы и т.д. С та1шми и дождевыми стоками в водоемы сбрасывается в огромных количествах практически вся гамма производимых в мире неорганическл х и органических веществ нефть и нефтепродукты, минеральные удобрения, ядохимикаты, тяжелые металлы, радиоактивные, биологически активные и другие загрязнители. В мировой океан ежегодно попадает в том числе более 15 млн т нефти и нефтепродуктов, 200 тыс. т свинца, [c.30]

    Успешное решение ключевых проблем экономического и социального раави ия нашей страны во многом зависит от увеличения и эффективности освоения минерально-сырьевых ресурсов недр, в первую очереаь топливно- энергетических, главными из которых являются нефть и газ. Это немыслимо без коренного повьш1ения эффективности поисков, разведки и разработки нефтяных и газовых месторождений, что может быть достигнуто лишь на основе кардинального ускорения научно-технического прогресса в решении наиболее важных проблем геологии нефти и газа, которые являются решающими при определении образования углеводородов, их миграции и аккумуляции, а также существенными при поисках, разведке и разработке как общеизвестных залежей нефти и газа, так и новых - нетрадиционного типа. Несомненно, одной из таких проблем в геологии нефти и газа, да и вообще в науках о Земле, является проблема аномальных давлений. Например, такие давления играют в нейшую роль в решении многих вопросов охраны окружающей среды, в частности при подземном захоронении разнообразных отходов, в том числе радиоактивных, чему до сих пор, к сожалению, не уделяется должного внимания. [c.3]

    Битумные и дегтевые вяжущие обладают целым комплексом полезных свойств они термопластичны, водонепроницаемы, погодоустойчивы и являются хорошими изоляторами. К тому же деготь, например, — хороший антисептик. Поэтому они широко применяются в строительстве. Например, при строительстве дорог используется до 75% всего производства органических вяжущих. Это объясняется тем, что дорожное покрытие из бетона на этих вяжущих отличается высокой износоустойчивостью, прочностью при различных климатических и погодных условиях и легкостью очистки дорожного полотна. Органические вяжущие на основе битума и дегтя находят широкое применение также при сооружении полов промышленных зданий, в качестве кровельных, гидро-, тепло- и пароизоляционных покрытий и материалов, приклеивающих мастик, покрасочных составов. Например, органические вяжущие, обладающие высокой адгезией к различным материалам и гидрофобными свойствами, применяют в качестве гидроизоляционных обмазок для защиты фундаментов зданий, трубопроводов, траншей, водохранилищ, бассейнов и т. д. Битум используется в качестве связующего материала при производстве плит из минеральной ваты, котерые применяются для теплоизоляции зданий, холодильных установок и трубопроводов. Органические вяжущие могут использоваться для защиты от коррозии металлов, бетона в виде, например, черных лаков, при сооружении защиты от радиоактивного излучения применяются они и для стабилизации грунтов. Не обходятся без органических вяжущих и другие области народного хозяйства, например лакокрасочная, нефтехимическая (производство пластмасс), электротехническая, металлургическая и др. [c.60]

    РУБИДИЙ (Rubidium, название от характерных линий спектра, лат. rubidus — темно-красный) Rb — химический элемент I группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 37, ат. м. 85,4678. Природный Р. состоит из двух изотопов, один из которых радиоактивен. Известны 16 искусственных радиоактивных изотонон. Р. открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом спектральным анализом минеральных вод. Получают Р. вместе с цезием из карналлита и лепидолита. Самостоятельных минералов не имеет. Р.— мягкий серебристо-белый металл, химически активен, самовоспламеняется на воздухе, с водой и кислотами взаимодействует со взрывом. В соединениях Р. одновалентен. Среди солей Р. важнейшие галогениды, сульфат, карбонат и некоторые др. Р. применяют для изготовления фотоэлементов, газосветных трубок, сплавов, в которых Р. является газопоглотителем, для удаления следов воздуха из вакуумных ламп соединения Р. применяют в медицине, в аналитической химии и др. [c.216]

    СКАНДИЙ (S andium, от названия Скандинавия) S — химический элемент П1 группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 21, ат. м. 44,9559. С. имеет один стабильный изотоп, известны 10 радиоактивных изотопов. Существование С. было предсказано Д. И. Менделеевым в 1870 г. Он подробно описал свойства С. и условно назвал его экабором. В 1879 г. С. был открыт шведским ученым Нильсоном в минерале гадолините, впервые найденном в Скандинавии. Содержится С. во многих минералах как примесь. С.— серебристый металл с характерным желтым отливом, т. пл. 1539° С. С. химически активен, при обычных условиях реагирует с кислородом, а при нагревании с водородом, азотом, углеродом, кремнием и т. п. растворяется в минеральных кислотах в соединениях С. проявляет степень окисления +3. С. извле-каЕот при переработке уранового, вольфрамового, оловянного сырья, также из отходов производства чугуна. С. применяют в виде сплавов для изготовления ферритов с малой индукцией (лля быстродействующих вычисл тельыых машин), [c.229]

    Натрий и калий широко распространены в природе, а литий, рубидий и цезий-редкие элементы. Литий содержится в нескольких силикатных минералах, а рубидий и цезий-спутники калия в соляных пластах, минералах и в воде минеральных источников. Франций - радиоактивный элемент, его наиболее долгоживуший изотоп имеет [c.165]

    Ионообменный метод. Реализация ионообменного процесса применительно к извлечению цезия и рубидия из радиоактивных растворов сопряжена с большими трудностями, так как адсорбцию малых количеств цезия и рубидия приходится проводить из растворов с большой интенсивностью ионизирующего излучения и высокой концентрацией посторонних солей. Следовательно, сорбенты должны быть максимально селективны и устойчивы к радиолизу. На практике испытаны ионообменные смолы, природные и синтетические минеральные гели, активные угли. При этом выявлены преимущества природных алюмосиликатов (глаукониты, монтмориллониты) и фосфатов циркония [216, 217]. Оказалось [2161, что цезий и рубидий лучше других катионов сорбируются на глауконите — железоалюмосиликате, сцемен- [c.133]

    Характеристика химии главной подгруппы V группы Системы, изученная в этом томе, была бы, несомненно, неполной и несовременной, если бы в настоящем пособии по неорганической химии не было дано углубленной биохимической главы. В конце XIX в. минеральная химия сделала значительный шаг к своему расцвету на основе изучения электролитической диссоциации, строения комплексных соединений, открытия радиоактивности и строения атома. Теперь наступает очередной этап расширения новых горизонтов в развитии неорганической химии и быстрой перестройки этой отрасли науки речь идет о прогрессирующем познании коферментов проблемы биогенности элементов в свете положения их в Периодической системе  [c.326]

    Э. Я. Турчихии [138, 139] с помошью радиоактивных изотопов исследовал водопроницаемость битумных плепок па разных минеральных материалах. Показано, что проникание воды сквозь битумную пленку, обволакивающую гидрофильные каменные материалы, значительно превосходит пропикапие воды сквозь пленку, покрывающую гидрофобные каменные материалы. С повышением вязкости биту ма уменьшается его водоиропицаемость. [c.121]


Библиография для Радиоактивность минеральных вод: [c.59]   
Смотреть страницы где упоминается термин Радиоактивность минеральных вод: [c.476]    [c.84]    [c.268]    [c.247]    [c.156]    [c.52]    [c.63]    [c.112]    [c.129]    [c.144]    [c.144]    [c.153]    [c.175]    [c.314]    [c.38]    [c.390]    [c.434]   
Гелиеносные природные газы (1935) -- [ c.83 , c.84 ]




ПОИСК







© 2025 chem21.info Реклама на сайте